
Capture and analysis of side effects in a
running Python program for the purpose of

unit test generation

Micha l Kwiatkowski

June 15, 2011

Abstract

Research on prospects of test generation for programs with side effects.
Adding side effects tracing capabilities to Pythoscope and implementing a
method of using acquired information during test generation.

Contents

1 Introduction 6
1.1 Unit test generation for legacy systems 6
1.2 Side effects . 7
1.3 Technology involved . 7
1.4 Characterization testing with Pythoscope 8
1.5 Thesis goal and contributions 10

1.5.1 Bytecode tracer for Python 10
1.5.2 Side effects extension to Pythoscope’s inspector 11
1.5.3 Side effects extension to Pythoscope’s test generator . . 11
1.5.4 A model of analysis for Python side effects 11

1.6 Structure of this thesis . 11

2 Unit testing: definitions 13
2.1 System under test . 13
2.2 Unit test . 13
2.3 Test double . 14
2.4 Legacy system . 15
2.5 Characterization test . 15
2.6 Test coverage . 16

3 Types of side effects 18
3.1 Internal side effects . 19

3.1.1 Mutation of a built-in type 21
3.1.2 Instance variable rebinding 22
3.1.3 Global variable read 23
3.1.4 Global variable rebinding 24
3.1.5 Class variable read . 24
3.1.6 Class variable rebinding 25

3.2 External side effects . 25
3.2.1 Keyboard input . 25
3.2.2 Terminal output . 26

1

3.2.3 File system access . 27
3.2.4 Others . 27

4 Capture and analysis of side effects 28
4.1 Bytecode interpretation, virtual machine and tracing 28
4.2 Bytecode instrumentation . 30
4.3 A model for capturing side effects 31
4.4 Bytecode instructions with side effects 32

4.4.1 CALL FUNCTION family of bytecodes 32
4.4.2 PRINT family of bytecodes 33
4.4.3 Bytecodes that deal with object attributes and global

variables . 34
4.5 Module import mechanism . 34
4.6 Sources of side effects . 36
4.7 Bytecode tracing example . 36
4.8 Implementation of the bytecode tracer 37

5 Test generation from collected data 41
5.1 Four-phase test cases . 41
5.2 Test suites as classes . 43
5.3 Setup and teardown . 44
5.4 Exercise step . 45
5.5 Verify step for pure functions 46
5.6 Verify step for functions with side effects 47
5.7 Requirements for test generation 48
5.8 Test generation process . 48
5.9 Test dependencies and hard-to-test code 51
5.10 Readability concerns . 53

6 Pythoscope architecture 55
6.1 Requirements and design principles for Pythoscope 55
6.2 Pythoscope dependencies . 57

6.2.1 CPython interpreter 57
6.2.2 Ctypes library . 57
6.2.3 Lib2to3 library . 58
6.2.4 Bytecode tracer library 59
6.2.5 The pythoscope package 59

6.3 Static inspector . 61
6.3.1 Analysis of packages and modules on the file system . . 61
6.3.2 Source code analysis 63
6.3.3 Bytecode analysis with CPython compiler 64

2

6.4 Dynamic inspector . 66
6.4.1 Ways to invoke dynamic inspection 66
6.4.2 Tracing calls and bytecodes 68
6.4.3 Object and call analysis 68

6.5 The middle layer . 70
6.6 Test generator . 73
6.7 Compatibility issues . 74
6.8 Comparison of parsing libraries for Python 75
6.9 Performance implications of dynamic analysis 75
6.10 Efficient management of syntax trees 78
6.11 CodeString, a basic test case building block 79

7 Survey on the quality of generated test cases on the example
of five open source projects 80
7.1 Testing projects . 80
7.2 Testing environment . 81
7.3 Testing procedure . 82
7.4 Results . 83
7.5 Sample generated test cases 84
7.6 Types of side effects handled by Pythoscope 87
7.7 Conclusions . 89

3

List of Figures

1.1 Call as a transformation . 9
1.2 Two main parts of Pythoscope 10

3.1 Interaction of the interpreter, application code and the exter-
nal world . 20

3.2 Mutation and rebinding . 21

4.1 Parsing, compilation and execution in CPython 29
4.2 Bytecode, interpreter, tracing hook and callback 30
4.3 Bytecode tracing sequence diagram 38
4.4 Interaction of bytecode tracer and lnotab during tracing . . . 40

5.1 Four-Phase Test pattern . 42
5.2 Application structure after inspection 49
5.3 Test generation process . 50
5.4 Creating test cases . 50

6.1 Structure of the lib2to3 library 58
6.2 Structure of the pythoscope package 60
6.3 Static inspection process . 61
6.4 Dynamic inspection process 66
6.5 Call analysis example . 69
6.6 Middle layer class diagram . 72
6.7 Submodules of the test generator 73

7.1 Example of a test case stub: http-parser 84
7.2 Example of a passing test case: pyatom 85
7.3 Example of a failing test case: isodate 86

4

List of Tables

3.1 Types of side effects in Python 19

4.1 Inputs and outputs for CALL FUNCTION family of bytecodes . . 33
4.2 Inputs and outputs for PRINT family of bytecodes 33
4.3 Inputs and outputs for bytecodes that deal with object at-

tributes and global variables 34
4.4 Side effects and their sources 37

6.1 Elements of a program at the module level 65
6.2 Abstract Syntax Tree libraries in Python 76

7.1 Projects chosen for testing . 81
7.2 Code metrics for sample projects 81
7.3 Projects and their testing methods 82
7.4 Testing results by project . 83
7.5 Pre-thesis testing results by project 84
7.6 Types of side effects handled by Pythoscope 88

5

Chapter 1

Introduction

1.1 Unit test generation for legacy systems

Unit testing, when properly practiced, has been shown to decrease number
of defects [25], prevent regressions and provide a safety net for experimenta-
tion1, making the task of software development and maintenance easier. On
the other hand unit testing, as any other development activity, takes time,
thus increasing overall cost of making software. While there is no hard data
on unit testing ROI (Return On Investment) there most certainly is a point
where time spent on unit testing is wasted, i.e. unit testing adds no addi-
tional value to the project. Moreover, writing unit tests for legacy systems2

has a very high cost and only long-term benefits. For those reasons anything,
a practice or a tool, that helps reduce the time spent writing and maintaining
unit tests has a potential of giving unit testing a satisfying ROI value.

One of the solutions to this problem is an automatic test generation.
Model-based testing [6] derives tests from a model of the system, usually built
even before the development process starts. Tests can also be generated from
application source code or directly from recorded interactions of a running
system with the user3. Recorded tests or tests generated directly from source
code are called characterization tests, because they characterize the actual
behavior of the system4. While useful in detecting regressions those tests
can’t validate the correct (or intended) behavior of the SUT (System Under
Test). Test generation is useful in improving testing ROI, but cannot be
thought of as a substitute for good software testing practices.

1See Tests as Safety Net in [17], page 24.
2For a definition of a legacy system see section 2.4 on page 15.
3More on this topic can be found in [17] in a section about Recorded Test pattern.
4More on characterization tests in section 2.5 on page 15.

6

1.2 Side effects

One of the aspects of writing good unit tests is ensuring isolation. Gerard
Meszaros calls it the Isolate the SUT principle [17]:

Whatever application, component, class, or method we are test-
ing, we should strive to isolate it as much as possible from all
other parts of the software that we choose not to test.

More often than not making perfectly isolated tests is hard. Application
code can depend on a lot of things: other functions, methods, classes, mod-
ules, libraries, configuration files, databases, network, etc. Anything that is
not an explicit SUT input can be thought of as an external component, and
all operations on those components as side effects5. Every dependency needs
to be accounted for during testing: classes initialized, modules imported,
libraries loaded, configuration files placed under the right paths and with
the right content, and so on. Problem of side effects for test generation is
twofold. First, side effects need to be recognized in the application and an-
alyzed. Only after that test cases with proper handling of those side effects
can be generated. Capture and analysis of side effects and generation of unit
tests from gathered data is the main topic of this thesis.

1.3 Technology involved

Python is a dynamic programming language with object oriented as well
as functional capabilities, with a distinctive readable syntax and focus on
imperative style of programming. Types of objects are settled on runtime,
meaning static analysis of Python programs is less reliable and typically will
yield less information than it could in case of languages with static typing
like Java or C++. All of this makes analysis and test generation for Python
programs a challenge, but hopefully techniques presented in this work can
be transmitted to other dynamic languages, like Ruby or Perl.

There is a comprehensive set of testing-related tools for Python, including:

1. test runners: nose, py.test, zope.testing

2. test double libraries: mock, python-mock, PyMock

3. code coverage tools: coverage, figleaf

4. debuggers: CodeInvestigator, pdb

5For a stricter definition of a side effect refer to chapter 3 on page 18.

7

5. code metrics and analysis tools: pylint, pychecker, pycallgraph, pymet-
rics

but only one actively maintained unit test generator: Pythoscope6. First
version of Pythoscope was developed by Micha l Kwiatkowski with the sup-
port of Walt Disney Animation Studios and released in September 2008 on
an open source license. The latest version of Pythoscope before this thesis
supported both static and dynamic analysis of Python programs and was
capable of generating unit test stubs as well as complete test cases of pure
(meaning free of side effect) code. In this thesis, all implementation work
will be based on Pythoscope - side-effects-aware extensions will be built on
top of Pythoscope’s codebase.

1.4 Characterization testing with Pythoscope

All function and method calls in Python can be described in a purely func-
tional manner, as a mathematical construct: transformation of input into
output.

f : I → O

Domain of I and codomain of O can be further divided up into explicit
and implicit. Function’s arguments (A) constitute an explicit input while its
return value (R) or raised exception (E) is an explicit output. State of the
external entities (S) constitute an implicit input, while any changes made by
the function to those external entities is an implicit output, or - as previously
defined - side effects (S ′).

f : (A, S)→ (R,E, S ′)

First step in automatic test generation is capturing all calls, with complete
inputs and outputs. Figure 1.1 illustrates call as a transformation. In gray
have been marked subdomains that a version of Pythoscope prior to this
thesis has been blind to. One of the goals of this thesis was implementing
a method of capturing all inputs and outputs of a function, including the
implicit ones.

6For a more comprehensive list of testing tools see Python testing tool taxonomy [43].

8

Figure 1.1: Call as a transformation

Goal of characterization testing is to assert that

∀i ∈ I : f(i) = f ′(i)

where f ′ is a new (modified) version of f (also after refactoring [9]). Since
it is impossible to check all values from the domain, a representative subset
must be chosen to form test cases from. Moreover, it would be best to choose
a minimal subset, so that a number of test cases correlate with complexity
of the function being tested. This problem of picking out test cases from an
infinite set of possible transformations has not been resolved in Pythoscope.
Instead, Pythoscope simply converts all transformations captured during dy-
namic analysis into test cases.

The final problem of automatic generation of test cases has to do with
test dependencies. Each test case has to reconstruct the input needed to
exercise the function. Arguments need to be created and state of the world
prepared. Pythoscope has to resolve all those dependencies when creating
a test case and that requires knowledge about connections between objects
and the external world. The problem gets even harder when test readability
is of concern7.

It is important to note that Pythoscope is not a fully automatic solution.
To provide a starting point for dynamic analysis, the user has to do some
setup work first.8

7Refer to section 5.10 on page 53 for details.
8Refer to 6.4.1 on page 66 for details.

9

1.5 Thesis goal and contributions

The main purpose of this thesis is to implement and describe modifications
that were needed to make Pythoscope understand and generate tests aware
of side effects.

There are four main contributions of this thesis. One of them is about
theory while the other three deal with the implementation. Since all imple-
mentation work has been based on Pythoscope, it is necessary to provide a
little bit of information about Pythoscope first.

Figure 1.2: Two main parts of Pythoscope

In the most simplified view, Pythoscope consists of two parts: the inspec-
tor and the generator. The inspector is responsible for gathering information
about the application. Inspector may analyze the static structure of a pro-
gram, and it may also run the program to analyze its dynamic behavior. The
generator is responsible for using data gathered by the inspector to generate
unit test cases that verify the behavior of a program. Pythoscope project
as a whole forms a combination of well researched areas, such as program
profiling techniques [11] used by the inspector or compiler design [1] applied
to the generator, and innovative application - unit test generation for a mod-
ern dynamic programming language. The pragmatic setting of the Python
language makes the implementation non-trivial and thus deserve detailed
treatment. More detailed description of Pythoscope’s structure can be found
in chapter 6.

1.5.1 Bytecode tracer for Python

One of the main shortcomings of Pythoscope’s inspector prior to this thesis
was its inability to trace bytecodes and calls into functions implemented in C
programming language. The old inspector could only trace Python function
calls. Bytecode tracing is necessary for tracing all kind of side effects, so

10

the first contribution of this thesis was implementing a bytecode tracer for
Python and merging it into Pythoscope. Bytecode tracer has been described
in detail in chapter 4.

1.5.2 Side effects extension to Pythoscope’s inspector

Once the bytecode tracer has been merged into Pythoscope it was necessary
to implement a rule-based system inside the inspector, so that it could rec-
ognize different types of side effects. The rule-based system itself as well as
a description of different sources of side effects can be found in chapter 4.
Types of side effects has been described in chapter 3.

1.5.3 Side effects extension to Pythoscope’s test gen-
erator

Just as the inspector had to be modified to recognize side effects the test gen-
erator also had to be altered to generate valid test cases that not only replayed
side effects but also validate their appearance. New version of Pythoscope is
able to prepare the external environment before the test case and then check
for any side effects that occurred when exercising the SUT, as already de-
scribed in section 1.4. Test generation process has been described in chapter
5.

1.5.4 A model of analysis for Python side effects

The last objective of this thesis was to describe types of side effects occurring
in Python programs and present a model of capture and analysis of those
side effects in the context of unit test generation.

1.6 Structure of this thesis

This thesis has been divided into seven chapters. First chapter is an introduc-
tion to the problem of test generation and the approach taken by the author
to improve the state of the art. Chapter 2 describes basic definitions needed
to understand rest of this work. Chapter 3 categorizes and describes different
kinds of side effects. Chapter 4 presents a model for capture and analysis
of side effects and describes its implementation in the Pythoscope project.
Chapter 5 moves unto a topic of generating unit tests for applications with
side effects. A model is followed by overview of the implementation, based
on the Pythoscope project. Chapter 6 delves into more detail of Pythoscope

11

architecture. Results of this thesis are summarized in the last chapter, where
quality of generated test cases is measured based on a sample of open source
applications written in Python.

12

Chapter 2

Unit testing: definitions

This chapter contains definitions that form a base for the rest of this work
and are used throughout the whole thesis. References are listed for further
reading. Other definitions are introduced when needed.

2.1 System under test

Concept central to the idea of unit testing is a system under test (SUT),
that Gerard Meszaros defines as follows [17]:

Whatever thing we are testing. The SUT is always defined from
the perspective of the test. When we are writing unit tests, the
SUT is whatever class (also known as CUT), object (also known
as OUT), or method (also known as MUT) we are testing; when
we are writing customer tests, the SUT is probably the entire
application (also known as AUT) or at least a major subsystem
of it. The parts of the application that we are not verifying in this
particular test may still be involved as a depended-on component
(DOC).

2.2 Unit test

In the context of this work, a unit test will be taken to mean an automated
developer test exercising a single unit of the SUT in isolation. Each
part of this definition is described in detail below.

Automation refers to the way tests are executed. Manual tests require a
human to run, while automated tests can be run without any super-
vision. Automated tests can be much faster and precise than manual

13

ones, but programming complex setup, interactions and checks can be
often problematic.1

Developer tests are tests used during development. They are written, man-
aged and run by developers.

A unit is a loosely defined term, and it depends on two things: the level of
detail a developer wants and programming paradigm used in the appli-
cation (that can be limited by the choice of a programming language).
A unit may refer to a function, procedure, method, class or even a mod-
ule or a package. Unit tests are not suitable for reading by a customer,
as they usually don’t map very well to high-level requirements.

Isolation means testing a component without its dependencies. Isolation is
key when trying to achieve bug localization (see below). Dependencies
are usually replaced with test doubles (see section 2.3).

Michael Feathers lists two qualities of a good unit test [7]:

1. short execution time

2. easy bug localization

Execution time is relevant because of the sheer number of unit tests in
a project: they can often go into hundreds and thousands2. Feathers draws
a line on 1/10th of a second - if a unit test takes longer than that it is
considered slow.

Second feature of a good unit test is quick and easy bug localization.
Failure of a test case should point directly at its cause. It should be done in
such a way that when a developer gets a test failure, she can almost instantly
interpret its meaning and localize error in code that caused the test to fail.
If SUT is sufficiently covered with unit tests it creates a very tight feedback
loop, which aids developers every time a code change is required.

2.3 Test double

The term test double was introduced by Gerard Meszaros in [17] as a generic
term for all kinds of specialized objects used during testing as substitutes of
real objects. Meszaros defines test double as follows:

1For more examples of manual and automated testing scenarios see [2].
2Pythoscope, which is a middle-sized Python project with over 3k LOC has over 400

test cases. CPython standard library in version 2.7 has over 1300 test cases, although not
all of them are unit tests.

14

A Test Double is any object or component that we install in place
of the real component for the express purpose of running a test.

Types of test doubles include dummies, stubs, mocks and fakes. They are
used to test components in isolation of other components as well as external
state like databases, network, file system, etc. More theory and practice
regarding test doubles can be found in [17] and [8]. Changes to the external
state in context of unit testing are covered in chapter 3.

2.4 Legacy system

Michael Feathers defines [7] legacy system simply as code without tests
and that definition will be used in this thesis. He justifies by stating that
without tests it is not possible to know whether any given code change is
beneficial or detrimental. With unit tests in place feedback is immediate and
clear, while the lack of tests inhibits change. At the same time it is hard
to add tests to a legacy system, because application not constructed with
testing in mind will need to be refactored to be testable. Michael Feathers
calls that The Legacy Code Dilemma:

When we change code, we should have tests in place. To put tests
in place, we often have to change code.

This chicken and egg problem makes the task of maintaining legacy sys-
tems very hard. Main purpose of test generators like Pythoscope is to get
the project over the initial hump, when there are no tests at all.

2.5 Characterization test

Characterization test is a test that describes and checks for the actual
behavior of the SUT. It’s different from a regression test in that the latter
verify the correct (or intended) behavior of the SUT, usually derived from re-
quirements and design documents. Characterization tests can be constructed
when no documentation is available, just by means of interacting with the
SUT. The main purpose of characterization tests is not to find bugs, but to
detect change. A developer may write a set of characterization tests to act as
a safety net during refactoring. Those tests will help her preserve behavior
of the system during development.

15

2.6 Test coverage

Test coverage is a measure of completeness of a test suite, and it forms a
basis for strategy of white-box testing. Glenford J. Myers sums up main goal
of white-box testing in “The Art of Software Testing” [19]:

White-box testing is concerned with the degree to which test cases
exercise or cover the logic (source code) of the program.

There are a couple of methods of measuring test coverage.
Statement (line) coverage measures number of statements (or lines)

that were executed at least once during the testing process. This is a very
weak criterion for white-box testing, yet the most easy to verify. When
counting lines of code, empty lines and comments are usually ignored.

Decision (branch) coverage puts focus on decision statements, like
if-else and while. A branch is covered when during a test run it had both
a true and a false outcome at least once.

Somewhat more detailed is condition coverage, as it focuses on individ-
ual conditions in a decision statements. For example, the following snippet
of Python code has one decision (branch) composed of two conditions:

if a > 0 and b == 2:

...

Both a > 0 and b == 2 are conditions forming a single decision (branch)
point. It can be said that a condition is covered when it takes all possible
outcomes at least once during the whole test run.

It is worth noting that it is possible to achieve condition coverage without
branch coverage. Using the example above, the following two test cases will
achieve full coverage for both conditions, but will fail to cover the branch
itself:

1. a=0, b=2

2. a=1, b=1

To overcome this flaw, both types of coverage can be combined. Full
decision-condition coverage can be achieved when each condition in a
decision takes on all possible outcomes at least once, and each of those deci-
sions also take on all possible outcomes at least once during a test run.

There are cases when decision-condition coverage is not enough to suf-
ficiently test the SUT and they all have to do with the way and and or

operators are implemented. Consider the following two test cases, still using
the same code example:

16

1. a=0, b=1

2. a=1, b=2

Theoretically they fully cover both conditions and the decision, but in
reality we could argue that the test cases don’t really cover all conditions
completely. It’s because to the interpreter a combination of two conditions
with an and really correspond to the following code:

if a > 0:

if b == 2:

...

...

With this definition in mind, two test cases mentioned above don’t cover
all conditions: b == 2 is never false, because a > 0 being false masks rest of
the code, preventing the second condition from executing.

That leads to a definition of multiple-condition coverage, which is ful-
filled when during a test run all possible combinations of condition outcomes
in all decisions are invoked at least once.

17

Chapter 3

Types of side effects

This chapter will show kinds of side effects that can be spotted in Python
programs. Real-world examples will be presented along with a commentary.
But before that, a few terms need to be defined.

A side effect may be defined as an interaction with some external state.
Interaction does not have to mean modification - an external state could only
be read and that would still count as a side effect. The key point here is that
the state can change at any time, outside of the current execution context
(and thus the adjective “external”). When side effects are absent from an
expression we can substitute any part of it with the computed value without
changing its meaning. In other words, when there are no side effects, time
is not a factor. Order of operations start to matter only in presence of side
effects.

Side effects can be divided into two groups, depending on their reach.
Side effects that are contained within the language interpreter and do not
affect the outside world are internal. Side effects that extend beyond the
interpreter are external. This basic classification can then be made more
detailed by looking at exact targets of side effects. For example, object
mutation is only a subset of internal side effects, just as variables rebinding.
Internal side effects are strictly limited by language capabilities, and are in
fact defined by it. Anything that deals with external state - state outside
of the interpreter - is an instance of an external side effect, so in practice
possibilities here are more vast.

There were two factors that played a role in choosing this particular
categorization of side effects over any other:

1. inspection method, and

2. treatment of those side effects during testing.

18

Some side effects can be recognized by the function being called, while
others are always caused by the same bytecode instruction - the inspection
method influences the way side effects are categorized. Still, some side effects
that utilize the same inspection method can be treated differently during
testing. For example, a file system side effect is captured by a function call
analysis, but requires totally different setup and teardown code than a mere
mutation (which also uses function call analysis). Refer to chapter 4 for
details.

Table 3.1: Types of side effects in Python

Internal External

Mutation of a built-in type Keyboard input
Instance variable rebinding Terminal output
Global variable read File system access
Global variable rebinding Other
Class variable read
Class variable rebinding

Most types of side effects will be shown on the same sample application,
called A-A-P. The application has a similar functionality to make, a pop-
ular Unix dependency-tracking build utility. A-A-P was written by Bram
Moolenaar and is licensed under GNU GPL. Source code of A-A-P can be
obtained from its homepage at http://www.a-a-p.org/. All code samples
come from a module named RecPython.py that contains Python functions
that can be used in “recipes”, which in A-A-P are taken to mean instruc-
tions on how to build a program. Line numbers refer to this file as acquired
from version 1.068 of the A-A-P package.

Examples for class variables read and rebinding will be shown on an
implementation of the Singleton pattern [10] written by this thesis author.

3.1 Internal side effects

Figure 3.1 presents a simplified view of the interpreter and its interaction with
the application code and the external world. In this view the interpreter
is a program, with its internal state as memory, Python source code as the
input data and bindings to the surrounding environment. Internal state
includes things like bytecode intstruction pointer, application stack, state of
application’s data structures, but also private interpreter’s data structures

19

Figure 3.1: Interaction of the interpreter, application code and the external
world

and bookeeping information, never visible to the running program. Any
change to internal state of the interpreter could be considered an internal
side effect. In this manner, an execution of a NOP instruction should be
considered side effecty, as it increments the bytecode instruction pointer.
Usually though, when internal side effects are considered, changes to the
state that is invisible to the interpreted program are ignored.

The main joint between the interpeter and the program being interpreted
are native data structures of a programming language. In Python those are
integers, floats, strings, lists, dictionaries, etc. In CPython location of objects
in memory is constant throughout execution, so the only visible change is by
means of mutation. Mutation of the most basic Python data structures can
manifest itself in multiple ways. Explicit change originating from the program
itself (like an explicit call to list.append to add an element to a list) is an
easy case, but others are more prevalent. All namespaces, including instance
and class attributes, are implemented using a standard dictionary object
(called __dict__) [14]. Thus, the mutation of this dictionary is a sign of a
change in name binding. Moreover, since user-defined classes are constructed
only from those basic data structures, any kind of change in user objects will
be reflected in change to instances of those basic data types. Unfortunately,
due to the way CPython is implemented, there is no uniform way to capture
all kinds of side effects. For example, binding changes of instance variables
manifest differently than mutation of other dictionaries. More on the topic

20

can be found in chapter 4.

Figure 3.2: Mutation and rebinding

The difference between rebinding and mutation has been illustrated on
figure 3.2.

3.1.1 Mutation of a built-in type

The most basic type of a side effect is mutation, i.e. a change to the state
of a mutable data structure. For example, adding an element to a list is a
mutation.

Python supports a few basic mutable data types, including lists, dictio-
naries and sets and for each of those there are many ways to modify them.
A list can be sorted in place, a dictionary can be cleared and a set can be
updated. Strings are not mutable in Python.

836 class ImgHTMLParser(htmllib.HTMLParser):

837 def __init__(self, formatter, verbose=0):

838 htmllib.HTMLParser.__init__(self, formatter, verbose)

839 self.img_list = [] # list of images so far

...

21

843 def handle_image(self, src, alt, *args):

844 if src:

845 from Remote import url_split3

846 scheme, mach, path = url_split3(src)

847 if scheme == ’’ and not os.path.isabs(src):

848 # img file name is relative to html file dir.

849 # Remove things like "../" and "./".

850 n = os.path.normpath(os.path.join(self.img_dir, src))

851 if not n in self.img_list:

852 self.img_list.append(n)

Code listing above shows a fragment of a function that uses mutation on
img_list instance variable. During object initialization img_list starts off
empty and when a call to handle_image happens, based on a value of the
src parameter the list can get a new element. Mutation happens on line 852
- method call append adds an element to a list.

3.1.2 Instance variable rebinding

Objects in Python are basically dictionaries, using __dict__ attribute as
the storage object with some metadata attached. Objects manifest behavior
through special treating of the __class__ attribute, and the related class
hierarchy. When a method is called on an object or an attribute is referenced,
contents of __dict__ and methods defined on superclasses define the actual
behavior. Encapsulation of attributes or methods is not enforced by the
language, making all accesses legal and direct.

836 class ImgHTMLParser(htmllib.HTMLParser):

837 def __init__(self, formatter, verbose=0):

838 htmllib.HTMLParser.__init__(self, formatter, verbose)

839 self.img_list = [] # list of images so far

840 def set_dir(self, dir):

841 self.img_dir = dir # dir of image file

Code listing above shows a simple implementation of a class with a
constructor (in Python always called __init__) and a setter on attribute
img_dir. The setter is an example of a method that has a side effect on
instance variable binding. The effect of calling set_dir method is changing
the binding of the img_dir instance variable. The side effect happens on line
841. It’s worth noting that this side effect doesn’t affect the original list at
all, and thus is totally different from what was described in section 3.1.1.

22

Objects that utilize __slots__ and don’t have __dict__ are treated the
same way, i.e. storage method of attributes doesn’t affect side effects. See
4.4.3 on page 34 for a description of the way attribute side effects are cap-
tured.

In Python classes are also objects - each class is an instance of a meta-
class, abstracting behavior of all classes. Since classes are objects, the same
treatment of attributes rebinding applies to them. More on that topic in the
following sections.

3.1.3 Global variable read

There are more namespaces in Python than the scope of a user-defined object.
There are other built-in types that have __dict__ attribute and thus behave
like a namespace. Each module has its own global namespace1. All top-
level functions and class definitions are referenced by module’s __dict__.
The same is true for global variables - variables defined at the top-level of a
module.

668 lastportname = None

669

670 def do_BSD_port(name, target):

671 """

672 Try using the BSD port system for the package "name".

673 "target" is "install" to install and "all" to build only.

674 Will ask the user when root permissions are required.

675 Returns non-zero for success.

676 """

677 global lastportname

...

690 if lastportname != name and not os.access(dirname, os.W_OK):

691 r = raw_input(("\nThe %s port appears to exist.\n" % dirname) +

692 "Do you want to become root and use the port? (y/n) ")

Example code above shows a global variable defined at line 668 and a
piece of code it is referenced by - condition at line 690 uses lastportname’s
value.

1Each source file with .py extension is a module in Python. More on physical structure
of a Python application can be found in section 6.3.1 on page 61.

23

3.1.4 Global variable rebinding

There are no constants in Python, at least not in the sense of constants in
languages like C or Java. All global variables can be rebinded, what means
that potentially any part of the codebase can modify a global variable.

726 lastpkgname = None

727

728 def do_Debian_pkg(name, target):

729 """

730 Try using the Debian apt-get command for the package "name".

731 "target" is "install" to install and "all" to, eh, do nothing.

732 Will ask the user when root permissions are required.

733 Returns non-zero for success.

734 """

735 global lastpkgname

...

766 if target == "install":

767 cmd = "apt-get install %s" % name

768 if os.access("/", os.W_OK):

769 from Commands import aap_system

770 aap_system(0, recdict, cmd)

771 else:

772 do_as_root(recdict, [], cmd)

773 print "apt-get finished"

774

775 lastpkgname = name

776

777 return 1

Code listing above shows a fragment of an imperative function called
do_Debian_pkg. It performs some actions and just before returning it rebinds
a global variable lastpkgname. Side effect of calling this function is a change
to the value of a global variable, happening exactly at line 775.

3.1.5 Class variable read

Similarly to modules described in previous sections, each class has its own
scope. All methods and attributes defined at the class-level are available
(and thus can be rebinded) through class’ __dict__.

24

1 class Singleton(object):

2 instance = None

3 def __new__(cls):

4 if cls.instance is None:

5 cls.instance = super(Singleton, cls).__new__(cls)

6 return cls.instance

Implementation of the Singleton pattern [10] above shows a canonical
example of class variables usage in Python. Class variable called instance

is initiated at line 2 and then accessed two times: first at line 4 inside the
condition and then at line 6 acting as a return value.

3.1.6 Class variable rebinding

Rebinding of class variables works the same as rebinding of instance variables,
the only difference being that the receiver of the change is a class instead of
a plain object.

1 class Singleton(object):

2 instance = None

3 def __new__(cls):

4 if cls.instance is None:

5 cls.instance = super(Singleton, cls).__new__(cls)

6 return cls.instance

Using the implementation of the Singleton pattern [10] again, the rebind-
ing is clearly visible at line 5. Result of the call to super will be the new
value of the instance class variable.

Special case of class variables rebinding is a technique called monkey
patching [35] - modifying a module or a class definition at runtime. Since
modules and classes in Python are mutable objects their definition can be
altered at any time. Use of that technique is discouraged, but nevertheless
possible.

3.2 External side effects

3.2.1 Keyboard input

Probably the easiest way to implement human-computer interaction interface
in Python is to use keyboard for input and terminal for output. Output is
described in the next section, but first keyboard input will be described.

25

There are many methods to get keyboard input in Python. A programmer
can use a built-in function raw_input to read a whole line of input or access
sys.stdin stream directly to do more complicated operations. The side
effects in both cases are very similar. Read operations usually block the
process and trim the read buffer, returning a string of characters.

690 if lastportname != name and not os.access(dirname, os.W_OK):

691 r = raw_input(("\nThe %s port appears to exist.\n" % dirname) +

692 "Do you want to become root and use the port? (y/n) ")

693 if not r or (r[0] != ’y’ and r[0] != ’Y’):

694 # User doesn’t want this.

695 lastportname = None

696 return 0

Fragment of a function presented above queries a user for an answer. If
the answer is not positive, a global variable lastportname is cleared and the
function returns. Keyboard input side effect happens on line 691.

3.2.2 Terminal output

Terminal output is the most basic method of displaying output for a Python
program. Even if the application has a GUI, terminal output is often used
for debugging purposes. Print statement is one of the first things a Python
programmer learns. As with keyboard input, there are more sophisticated
methods of accessing the output streams: sys.stdout and sys.stderr, al-
though they will not be discussed here.

766 if target == "install":

767 cmd = "apt-get install %s" % name

768 if os.access("/", os.W_OK):

769 from Commands import aap_system

770 aap_system(0, recdict, cmd)

771 else:

772 do_as_root(recdict, [], cmd)

773 print "apt-get finished"

Snippet of a function quoted above shows a common source of a terminal
output side effect - the use of print statement. Line 773, when executed,
will append a new line to a stream of output characters.

26

3.2.3 File system access

The last class of side effects covered in this work has to do with the file system.
Creating files, reading files, descending directory tree, checking permissions
are just a tip of the iceberg of all possible operations that can be performed
on the file system. Ways to interact with the file system in Python are
scattered across the interpreter and the standard library. To perform basic
operations on files, a built-in open function will suffice, but more involved
operations require use of the os module.

746 try:

747 if not os.path.isfile("/etc/debian_version"):

748 return 0 # Not a Debian system.

749 if not program_path("apt-get"):

750 return 0 # apt-get is not available (or $PATH wrong)

751 except:

752 # Can’t use os.access().

753 return 0

Code listing above shows an example use of the os.path.isfile function.
This function takes a string and queries the file system in search of a file
with a given name. If found, True is returned, otherwise the result is False.
This operation clearly depends on state of the file system, making it a good
example of a file system side effect. Os.path.isfile invocation happens on
line 747.

3.2.4 Others

There is plenty of other types of external side effects not covered in this
work. Practically any extension implemented in C (thus outside of reach
of the pythoscope’s dynamic inspector) is a potential source of side effects.
Pseudorandom number generators, database bindings, sockets, graphical dis-
play and interfaces, etc. - all are great real-world examples of extensions that
can bring new types of side effects into a program. Handling all those differ-
ent types of side effects is a good topic for more research, or possibly even
another thesis. They are not listed and categorized here, because they are
outside scope of this work.

27

Chapter 4

Capture and analysis of side
effects

The concept of side effects does not exist in Python. Unlike languages like
Eiffel1 or Haskell2, side effects in Python are not transparent to the program-
mer, i.e. there are no special language constructs to express whether a given
statement or expression causes a side effect. Identification and description
of different kinds of side effects has been a vital part of this thesis just as
was actual implementation of their handling in Pythoscope. Types of side
effects has been described in chapter 3. This chapter will focus on describing
a method of capturing those side effects and their further analysis.

4.1 Bytecode interpretation, virtual machine

and tracing

Bytecode is a representation of a program suitable for execution on a virtual
machine. There are over 100 different bytecode instructions in Python, the
exact number varies between interpreter versions.

Bytecode is produced from source code by the compiler3. For example,
the following source code:

1Eiffel implements a concept called Design by contract described by Bertrand Meyer
in [18], chapter 11, which allows to specify side effects as a part of method’s contract.

2Haskell uses its type system to describe side effects through a language construct called
monads. Refer to [20], chapter 7 for details.

3In fact, convertion of the source code into bytecode has two steps, first one involving a
parser and an intermediate representation: Abstract Syntax Tree, but that doesn’t bring
anything into the discussion of tracing and can be safely omitted.

28

def myfunc(alist):

return len(alist)

will get converted into the following sequence of bytecodes:

LOAD_GLOBAL 0 (len)

LOAD_FAST 0 (alist)

CALL_FUNCTION 1

RETURN_VALUE

Three of those bytecodes take arguments (listed above next to the byte-
code name), while the last one takes none.

Process of parsing, compilation and execution has been presented on fig-
ure 4.1.

Figure 4.1: Parsing, compilation and execution in CPython

A virtual machine (VM) interprets each bytecode instruction by exe-
cuting a machine code corresponding to the bytecode’s meaning. CPython
interpreter is a portable virtual machine implemented in C programming
language4.

Execution of bytecode by the CPython interpreter utilizes a stack for
holding intermediate computation data, like arguments for operators or func-
tions and return values. This makes the CPython VM a stack machine. Later
in this chapter a name of value stack will be used to refer to the interpreter’s
stack.

The CPython interpreter provides a number of tracing hooks that allow
writing profilers, debuggers and other tools that need to perform analysis of
a running program. Each hook corresponds to a different execution event: a
function call, a function return, exception propagation or a step into a new
source code line. The same tracing hooks allow Pythoscope to inspect side

4For more on CPython refer to section 6.2.1 on page 57

29

effects, as well as perform rest of dynamic analysis: creating execution graph
and gathering values.

Tracing hooks can be used by registering tracing callbacks - Python
functions that take event details as input and are run in a separate context,
what means that their instructions are not being traced, avoiding an infinite
loop.

4.2 Bytecode instrumentation

Figure 4.2: Bytecode, interpreter, tracing hook and callback

Each bytecode instruction to be executed is first passed over to a regis-
tered callback that can analyze it. Once the tracing function finishes pro-
cessing the context switches back to the interpreter which executes the next
bytecode instruction.

Knowledge of the bytecode instruction itself is not enough to reason about
the behavior of a program under inspection. Since CPython is a stack-based
interpreter it utilizes a value stack for most of its processing. In particular,
arguments to bytecode instructions are passed by the stack. For example, to
execute a BINARY_ADD instruction, the CPython interpreter does the follow-
ing:

1. pops value of the first addend from the value stack

2. pops value of the second addend from the value stack

30

3. adds the two objects

4. pushes the computed sum to top of the value stack

In effect, execution of the BINARY_ADD instruction causes the stack to
change. This is the case with many other bytecode instructions.

In order to properly discover and analyze side effects the tracing call-
back need not only recognize the bytecode, but also access the value stack.
The interaction between bytecode, the interpreter and a tracing callback is
presented on figure 4.2.

4.3 A model for capturing side effects

All side effects in Python can be tracked back to a single point: the underlying
interpreter implementation, which in case of CPython is code implemented
in C. Means of invoking that code from a Python program are twofold. The
most common case is directly invoking a function implemented in C that
causes side effects. For example, by calling the built-in function open a
multiple filesystem-related side effects will be invoked: file will be checked
for existence, possibly created and opened afterwards, for reading or writing
depending on options passed to the function by the programmer. Second
method of invoking a side effecty code in CPython is by a particular bytecode
instruction. For example, a print "Hello" statement maps to PRINT_ITEM

bytecode, which does a side effect on terminal output.
Based on that description of sources of side effects a rule-based sys-

tem can be constructed that will be able to recognize side effects. A set of
simple rules like “when function X sucessfully returns assume side effect Y
happened” or “when bytecode X is executed assume side effect Y happened”
can be prepared to cover all cases of side effects. There are four possible rule
templates, presented below.

1. side effect X happens always when function F is called (bytecode in-
struction B is executed)

2. side effect X happens when function F is called (bytecode instruction
B is executed) with arguments A

3. side effect X happens when external entity E is in state S at the time
of execution of function F (bytecode instruction B)

4. side effect happens only at certain times that cannot be reliably deter-
mined (e.g. activation of a side effect depends on the internal state of
a module implemented in C)

31

First three cases can be implemented, but the last one cannot. If there
is no way to tell if a side effect happened or not inspection will never be
complete. The only answer to that problem is to ignore those side effects,
don’t inspect them and don’t consider them during test generation.

Preparation of such side effect inspection rules requires careful consider-
ation and knowledge about both interpretation of bytecode by the CPython
interpreter and behavior of standard library functions. This method can also
be extended to external libraries, but just as in the case of the standard
library side effects will have to be explicitly defined by a set of rules. In
summary, this technique of inspecting side effects is very general and can
be used in many contexts, but requires significant implementation work, as
for each side effect a set of rules is required. This follows from a practically
infinite number of side effects types, mentioned in chapter 3.

4.4 Bytecode instructions with side effects

Most of Python bytecodes don’t cause side effects. Because of that only a
small set of bytecodes has to be monitored by Pythoscope. Those can be
divided into three groups, each described in their own subsection.

Descriptions are accompanied by tables that list all inputs and outputs of
each bytecode, according to transformation schema presented in section 1.4.
The only difference is that arguments in case of bytecodes are taken from the
value stack, while return value is placed on the value stack.

4.4.1 CALL FUNCTION family of bytecodes

This group includes four bytecodes: CALL_FUNCTION, CALL_FUNCTION_VAR,
CALL_FUNCTION_KW and CALL_FUNCTION_VAR_KW. All result in a function call,
but each one has a slightly different calling convention. CALL_FUNCTION

bytecodes themselves don’t read or modify external state, although functions
that they call may do those things. Captured side effects depend strictly on
rules, as described in the previous section. Value stack plays a crucial role
in determining side effects during function calls.

32

Table 4.1: Inputs and outputs for CALL FUNCTION family of bytecodes

Bytecode Takes Reads Returns Raises Modifies
arguments external value exception external

state state

CALL FUNCTION x x x
CALL FUNCTION VAR x x x
CALL FUNCTION KW x x x
CALL FUNCTION VAR KW x x x

4.4.2 PRINT family of bytecodes

This group includes four bytecodes: PRINT_ITEM, PRINT_ITEM_TO, PRINT_NEWLINE
and PRINT_NEWLINE_TO. Each of them causes a side effect on a file-like ob-
ject5. Usually it means printing to a terminal output, but not always - it
all depends either on an object bound to sys.stdout variable (in case of
PRINT_ITEM and PRINT_NEWLINE) or on an object explicitly passed to the
print statement (in case of PRINT_ITEM_TO and PRINT_NEWLINE_TO). For ex-
ample, when a StringIO object6 has been passed a side effect is a mutation
of that object and no filesystem-related side effect occurs.

Table 4.2: Inputs and outputs for PRINT family of bytecodes

Bytecode Takes Reads Returns Raises Modifies
arguments external value exception external

state state

PRINT ITEM x x x x
PRINT ITEM TO x x x
PRINT NEWLINE x x
PRINT NEWLINE TO x x x

5The Python Language Reference [48] defines “file-like object” as an object with a
write() method.

6See StringIO documentation page [47] for a description of a StringIO object.

33

4.4.3 Bytecodes that deal with object attributes and
global variables

This group includes three bytecodes related to attribute access (LOAD_ATTR,
STORE_ATTR and DELETE_ATTR) and three bytecodes related to global vari-
ables access (LOAD_GLOBAL, STORE_GLOBAL and DELETE_GLOBAL). Execution
of all of those bytecodes unconditionally causes a corresponding side effect.
STORE bytecodes modify the binding of a variable, DELETE bytecodes remove
the binding itself, while LOAD is a read operation.

Table 4.3: Inputs and outputs for bytecodes that deal with object attributes
and global variables

Bytecode Takes Reads Returns Raises Modifies
arguments external value exception external

state state

LOAD GLOBAL x x x x
STORE GLOBAL x x
DELETE GLOBAL x x x x
LOAD ATTR x x x x
STORE ATTR x x x
DELETE ATTR x x x x

4.5 Module import mechanism

Import mechanism in Python can have two sources: it can be invoked by cer-
tain bytecode instructions (IMPORT_STAR, IMPORT_NAME and IMPORT_FROM)
or it can be invoked by calling the built-in __import__ function. In this
regard it is neither a direct source of side effects (a concrete bytecode in-
struction or a C function is) nor it is a type of side effect (as it can cause
many different types of them). It has been included in this chapter because
it constitute an important part of Python, and no matter the source, the
mechanism behaves the same way.

The import mechanism can cause a plethora of side effects of different
kinds. In the most basic case an import statement refereces contents of a
global variable, in the more involved it can query and modify the file system,
modify global state and execute arbitrary Python code. Importing process
is illustrated below with possible side effects listed next to the description.

34

1. Import arguments are parsed. There are a number of alternatives of
the import statement. Examples of valid import statements include:

• import sys

• from itertools import count, groupby

• from os.path import basename

• from stat import *

• import curses.ascii

Each version has different semantics. Parsing import statements doesn’t
cause any side effects.

2. sys.modules global dictionary is checked to see if the module that is
needed has been imported before. If yes, it is returned immediatelly
and the import process stops.

3. If the module hasn’t been imported before, it is looked up on the file
system. Rules for querying the file system grown complicated over
the version of Python, but there is no reason to list them all here.
Important thing is that in this step file system is read extensively:
directories’ contents are listed, files are read and their properties (e.g.
last modification time) are checked.

4. All Python source files required by the import statement are compiled.
Compilation doesn’t cause any side effects. This step can be skipped
if an already compiled version of the module is present.

5. If .pyc file is not present or outdated a write to a file is attempted.
Failures are generally ignored (a file write may fail for any number of
reasons, e.g. because of unsufficient permissions).

6. All Python modules required by the import are executed. Since a
module can contain any Python code all kinds of side effects can happen
during this stage. Modules that cause side effects during import that
extend beyond the scope of the module itself are often called to be not
import-safe.

7. Finally, sys.modules global dictionary is updated with the information
about the just imported module. Any future imports from this module
will use that information, speeding up the process and preventing from
any module to be imported more than once.

35

In summary, the import procedure itself can cause the following list of
side effects7:

• global variable (sys.modules) read

• file system access

• built-in type (dictionary referenced by sys.modules) mutation

in addition to any side effects caused by the execution of a module being
imported.

Current version of Pythoscope ignores side effects listed above and only
traces execution of application modules. In other words, the import proce-
dure itself is treated as being side-effects-free, which strictly is erroneous, but
will cause problems in practice only for programs that reconfigure the im-
porting process itself8. What Pythoscope does trace is side effects inside the
application modules themselves. In other words, Pythoscope treats import
mechanism as an internal concern of the interpreter.

4.6 Sources of side effects

As mentioned earlier in section 4.3 there are two general sources of side effects
in CPython: calls to certain C functions and invocations of certain bytecode
instructions. Those have been described in previous sections, so now it is
possible to connect all types of side effects described in chapter 3 with ways
of invoking them. Table 4.4 puts side effects and their sources together.

4.7 Bytecode tracing example

Figure 4.3 presents an interaction between the interpreter, bytecode tracer
callback and the value stack during tracing of a sample code presented earlier
in this chapter (see section 4.1 on page 28). Before start of the inspection,
the bytecode tracer callback is registered with the interpreter tracing hook.
After that point each bytecode executed can be captured and analyzed by the
bytecode tracer. Some bytecodes (like LOAD_GLOBAL in this case) are always
interpreted to cause side effects, others are always ignored (like LOAD_FAST

in this example) and others are conditional - their assesment usually involves

7Refer to chapter 3 for a description of those side effects.
8Python documentation [42] lists an import hook as “an advanced function that is not

needed in everyday Python programming”.

36

Table 4.4: Side effects and their sources

Side effect Sources

Mutation of a built-in type C functions (e.g. list.append),

Instance variable rebinding STORE ATTR and DELETE ATTR bytecodes,

C functions (e.g. setattr)

Global variable read LOAD GLOBAL bytecode,

C functions (e.g. getattr),

Global variable rebinding STORE GLOBAL and DELETE GLOBAL bytecodes,

C functions (e.g. setattr),

Class variable read LOAD ATTR bytecode,

C functions (e.g. getattr)

Class variable rebinding STORE ATTR and DELETE ATTR bytecodes,

C functions (e.g. setattr)

Keyboard input C functions (e.g. raw input)

Terminal output PRINT family of bytecodes,

C functions (e.g. sys.stdout.write)

File system access C functions (e.g. open),

Other C functions

checking the value stack. In the example a len built-in function is invoked.
Rules in Pythoscope define that it doesn’t cause side effects, so the call is
eventually ignored.

The same process is carried over for all code executed after registering
the tracer callback. Each bytecode is analyzed and extracted side effects are
stored for later, to be utilized during test generation.

4.8 Implementation of the bytecode tracer

Vanilla CPython is not capable of tracing individual bytecode instructions.
It has mechanisms for tracing lines of code andfunction calls, which is enough
to implement debuggers, profilers and code coverage tools, but doesn’t allow
tracing side effects, crucial to Pythoscope. The problem of adding bytecode
tracing capabilities to CPython can be divided into two subproblems: the

37

Figure 4.3: Bytecode tracing sequence diagram

problem of forcing the interpreter to invoke a callback between execution of
bytecodes and the problem of access to interpreter’s internal state.

A base for capturing execution of bytecodes was a technique published in
2008 by Ned Batchelder [3]. To describe the method an explanation of the
structure of Python code objects is first needed.

Python code objects (not to be confused with bytecode) are used inter-
nally by the interpreter, yet are exposed to the programmer9. Code objects
contain description of a function required for its execution, like its arguments
count, number and names of local variables, stack size, bytecode instructions
and a special mapping from bytecode offsets to line numbers, called lnotab.
This mapping is then used by the interpreter during line tracing to determine
when it should execute a registered trace callback. The check is done after
each bytecode instruction, but callback is invoked only after a new source
code line is entered. What interpreter considers a new line is controlled by
lnotab.

To enable bytecode tracing then it is necessary to modify the lnotab in

9For a description of code objects refer to chapter 3 of [48]

38

such a way that the interpreter will treat every bytecode instruction as a
new line, effectively turning line tracing into bytecode tracing. The bytecode
tracer does exectly that as a step preceding execution - it modifies lnotab of
the code to be executed. In a dynamic language like Python is isn’t enough
though. Because of the capability to define functions on-the-fly and dynam-
ically load (import) any code, throughout execution the bytecode tracer has
to control any new code objects and rewrite them before they are executed.
This dynamic rewriting of code objects is a key technique making bytecode
tracing in Python possible.

The only problem when this technique requires special treatment is im-
port of modules. Import process from the point of view of the tracer function
is atomic: before the execution of an import statement the module is not
loaded, and after: the module is present and initialized. The problem is that
the bytecode tracer needs to rewrite module’s code object after it is read,
but before it is executed. To achieve that a custom import hook has been
used [33].

The problem of accessing interpreter’s internal state is strictly related
to the value stack, as this is the structure where lies all data important for
bytecode tracing. Value stack is not normally accessible from the level of a
Python application. The bytecode tracer implemented in Pythoscope uses
ctypes [31] extension for accessing values of the interpreter’s stack, allowing
to capture and analyze arguments to all bytecodes and calls, what ultimately
enables dynamic analysis of side effects (refer to section 4.7 for an example).

Figure 4.4 is a view of figure 4.2 specific to the context of bytecode tracing.
Code object has been marked as a container for bytecode and lnotab, which
is being rewritten by the callback.

39

Figure 4.4: Interaction of bytecode tracer and lnotab during tracing

40

Chapter 5

Test generation from collected
data

Before delving into a topic of test generation, a structure of a good unit test
case has to be presented first. Tests generated by Pythoscope should obey
all rules of manually written test cases, so they are just as easy to maintain
and extend. There are two basic rules of unit testing structure: one have to
do with the layout of a single test case, and the other with composition of
test cases into test suites.

5.1 Four-phase test cases

Gerard Meszaros in his book “xUnit Test Patterns” [17] presents a structure
of a typical unit test case. He calls it a Four-Phase Test pattern.

We design each test to have four distinct phases that are executed
in sequence: fixture setup, exercise SUT, result verification, and
fixture teardown.

1. In the first phase, we set up the test fixture (the “before”
picture) that is required for the SUT to exhibit the expected
behavior as well as anything you need to put in place to be
able to observe the actual outcome (such as using a Test
Double).

2. In the second phase, we interact with the SUT.

3. In the third phase, we do whatever is necessary to determine
whether the expected outcome has been obtained.

41

4. In the fourth phase, we tear down the test fixture to put the
world back into the state in which we found it.

Figure 5.1: Four-Phase Test pattern

Exercise step invokes the SUT, while the verify step compares SUT’s
output with expected outcome. In case of a mismatch, a test failure is re-
ported.

Setup puts the SUT in a state required to carry out a particular test
scenario. That usually involves preparation of the environment and initial-
ization of objects.

Teardown phase is responsible for bringing the world back to a pristine
state. Not all actions performed during the setup phase need a corresponding
teardown - some resources tear down automatically. One of such things are
objects - Python as a garbage-collected language doesn’t need to explicitly
destroy objects and free memory allocated to them. External resources usu-
ally require explicit teardown, for example files created during setup need
to be deleted before the test completes. Teardown phase should be uncon-
ditional - meaning any possible test errors in the exercise or verify phases
should not interfere with it. In Python this is usually achieved by a use of a
try-except block.

Setup and teardown phases are optional - only exercise and verification
are required to form a valid test case.

In Python unit test cases are written as methods - name of a method
need to start or end with the word “test”, while the method body need to
contain the four phases. A sample Python unit test case is presented below.

def test_empty_database_has_no_users(self): # method name

conn = Database.open() # setup

count = conn.select(’count’, ’users’) # exercise

42

assert count == 0 # verify

conn.close() # teardown

5.2 Test suites as classes

Second pattern of structuring unit tests organizes the way test cases are
bundled together into sets, or the so called test suites. The idea is to
employ a way of gathering executable pieces of code together natural to
the programming language. In the case of Python, a language with strong
object-oriented support, this involves utilizing classes and methods. Gerard
Meszaros calls this pattern Testcase Class pattern [17] and the idea is to
group a set of related Test Methods on a single Testcase Class.

Using this pattern, a sample test suite in Python can look like this:

class TestUser(unittest.TestCase):

def test_user_does_this(self):

...

def test_user_does_that(self):

...

There are a few things worth noticing here. First, a test class name has
to contain the word “Test”. Second, this class has to inherit from a general
unittest.TestCase class, which implements functionality common to all
test classes.1 Third, each test case is a separate method with a unique name.

This pattern of constructing test suites, besides keeping related test cases
together, additionally allows to archieve some kind of testing abstraction by
utilization of inheritance. The unittest.TestCase class itself contains some
tools helpful during testing. Those include:

1. setUp and tearDown methods that define setup and teardown for all
test methods in a class,

2. set of common assertions, like assertEqual or assertRaises,

3. an algorithm for running all test methods in a class.

By making specialized subclasses of unittest.TestCase a developer can
abstract common patterns that appear in her test suites. This is usually an

1This requirement of inheriting from unittest.TestCase is specific to the unittest
library [49]. Other Python unit testing environments usually don’t care about superclass
of a test class. This behavior can be found in nose [36] and py.test [39] testing frameworks.

43

extension of the default set of assertions or specific setup and teardown pro-
cedures. Other abstractions are also possible, e.g. overriding order in which
test methods are run. Extensibility of the Python unit testing framework
is its big strength, allowing the growing test suites to stay manageable and
understandable.

5.3 Setup and teardown

As was mentioned in chapter 2 isolation is a key characteristic of a good unit
test case. Means of achieving isolation will be presented here.

One aspect of isolation is environment, both internal and external. Non-
pure code can be sensitive to certain parts of the environment and a valid test
case would have to depend on a careful preparation of that environment. But
preparation is only half of the story - in order to keep unit tests separated,
a cleanup procedure has to also be taken into consideration. Those two
phases of environment preparation and cleanup are enclosed within setup
and teardown of a test case, mentioned at the beginning of this chapter.

Setting up the environment to satisfy requirements of a test case is not
the only way to achieve isolation. Another way is to use test doubles2 in
place of environment dependencies. Test doubles are usually implemented
as standard Python objects that are garbage-collected meaning they don’t
need any explicit teardown. Also, they are usually easier to setup than real
external dependencies. Lastly, test code that uses test doubles generally runs
faster than code that uses real objects. For example, in-memory database
mock object will behave faster (and more reliably) than a real database
communicating with a test case by a socket. The only downside of using a
test double is a risk of testing the wrong thing. A test double that behaves
differently than a real object may conceal a bug in the application code.

As an example of isolation code in test cases generated by Python, con-
sider the following application code:

module.py

no_calls = 0

def fun():

global no_calls

no_calls += 1

return True

2See section 2.3 on page 14 for a definition of a test double.

44

A function fun modifies a global variable no_calls each time it is called,
always returning True. To properly test such a function it is necessary to
prepare a state of no_calls global variable before the test (setup) and restore
it to its previous value after the test (teardown). If a single call to fun

has been caught during dynamic inspection, Pythoscope will generate the
following test case:

1 from module import fun

2 import unittest

3 import module

4

5 class TestFun(unittest.TestCase):

6 def test_fun_returns_true(self):

7 old_module_no_calls = module.no_calls

8 module.no_calls = 0

9 self.assertEqual(True, fun())

10 self.assertEqual(1, module.no_calls)

11 module.no_calls = old_module_no_calls

Setup consists of storing the old value of no_calls (line 7) and setting
its value to 0 (line 8). After the assertions, teardown can be run which takes
care of restoring no_calls to its former state (line 11). This way other tests
that depend on the state of this global variable won’t be affected.

5.4 Exercise step

Pythoscope combines the exercise step with a part of the verification step
through assertions. In testing, assertion is a function that ensures that a
certain condition holds, and if it doesn’t hold a test failure is reported. For
example, the following assertion checks that the return value of a call to
plusone(10) will be 11.

self.assertEqual(11, plusone(10))

Call to plusone(10) is the exercise step, while the whole assertion itself
forms the verification step. While it would be possible to split the above
assertion into two lines:

result = plusone(10)

self.assertEqual(11, result)

hereby putting the exercise and verification steps on separate lines, it
is customary to combine them as in the first example. This is also the
convention that Pythoscope uses.

45

5.5 Verify step for pure functions

Wikipedia defines a pure functions as a function that meets the following
two conditions [50]:

1. The function always evaluates the same result value given
the same argument value(s). The function result value can-
not depend on any hidden information or state that may
change as program execution proceeds or between different
executions of the program, nor can it depend on any external
input from I/O devices.

2. Evaluation of the result does not cause any semantically
observable side effect or output, such as mutation of mutable
objects or output to I/O devices.

Testing pure functions is substantially easier than testing other code.
First off, usually no setup or teardown is required, as the function only
depends on the arguments passed. Second, all that needs to be asserted
about such function is its return value. By definition a pure function does
no side effects, so there’s no need to check for mutation of input, globals or
change to any other external state.

Consider the following definition:

def plusone(x):

return x + 1

Given that Pythoscope captured plusone(10) call during dynamic in-
spection the generator will be able to form a complete test case presented
below.

class TestPlusOne(unittest.TestCase):

def test_plusone_returns_11_for_10(self):

self.assertEqual(11, plusone(10))

As long as the arguments list is short and constructing it brings close
to none dependencies the test cases will be as readable as the one presented
above. While they may require a complex setup, test cases for pure functions
will always contain only one assertion.

For the purposes of Pythoscope’s inspection, functions that raise excep-
tions can still be considered pure, as long as they fulfill the two conditions
mentioned earlier. Consider the following example:

46

def raise_if_too_big(x):

if x > 100:

raise ValueError

Given that Pythoscope captured a call to raise_if_too_big(101) dur-
ing dynamic inspection the generator will be able to form a test case with
a assertRaises assertion that checks if the provided exception has really
been raised.

class TestRaiseIfTooBig(unittest.TestCase):

def test_raise_if_too_big_raises_value_error_for_101(self):

self.assertRaises(ValueError, lambda: raise_if_too_big(101))

Those two types of assertions (assertEqual and assertRaises) are all
that is needed for testing output of pure functions, no matter if it is a return
value or an exception.

5.6 Verify step for functions with side effects

Once side effects enter the picture it is no longer possible to test the SUT only
with assertions on the return value (mentioned in the previous section). All
side effects have to be treated as behavior of the SUT and tested accordingly.
In Pythoscope this is achieved by assertions that check state transitions - they
assert that state has been properly changed after exercising the SUT.

A sample generated test case from section 5.3 will be used as an example.

1 from module import fun

2 import unittest

3 import module

4

5 class TestFun(unittest.TestCase):

6 def test_fun_returns_true(self):

7 old_module_no_calls = module.no_calls

8 module.no_calls = 0

9 self.assertEqual(True, fun())

10 self.assertEqual(1, module.no_calls)

11 module.no_calls = old_module_no_calls

Calling function fun causes a side effect: a change in binding of a global
variable no_calls. To test that such side effect actually happens, two ele-
ments are needed. First, before the exercise step, preparing an initial state

47

of the no_calls variable becomes a part of the setup procedure (already de-
scribed in section 5.3). Here, no_calls is set to 0 in line 8. After the exercise
step (line 9) an assertion on the new changed state of no_calls variable is
made. Here, the assertEqual in line 10 asserts that no_calls has now a
value of 1.

All internal side effects can be handled by an equality assertion of some
kind. External side effects require more sophisticated methods of checking
state, usually involving use of test doubles. For example, to test terminal
output3 it is best to mock the standard output stream and assert changes to
the mock objects after the exercise step.

5.7 Requirements for test generation

Test generation exhibits a few classical challenges related to code generation.
First of all, each test case as well as the whole test suite file, have to be valid
Python code, i.e. all of the code has to be compilable and executable by
the standard CPython interpreter.

Second, a lot of care has been put into generation of readable code. Test
cases generated by Pythoscope are meant to be modified by a programmer,
so all typical conventions of good code style4 have to be obeyed.

Third, the whole test suite have to be executable in the test environ-
ment of the user’s choice. unittest environment from the Python’s standard
library is the default, although other test environment are supported as well5.

Finally, the test cases should not only be executable, all test cases
should actually pass, given that the application code has not been altered
after test generation. All those areas of interest put unique constraints on
the test generation process, at times forcing hard decisions between simplicity
and correctness.

5.8 Test generation process

Data gathered during inspection has a hierarchical structure. It is presented
on figure 5.2.

Static inspection recognizes the application as being composed of many
modules and each module contains standalone functions and classes. After

3Refer to section 3.2.2 on page 26.
4The most popular and basic code style conventions for Python are described in the

PEP-8 document [22].
5For alternatives to unittest see nose [36] and py.test [39].

48

Figure 5.2: Application structure after inspection

dynamic inspection that view is enriched with information on actual uses of
those functions and classes. Functions are called yielding function calls, while
classes are instantiated giving objects, each of which is related to one or more
method calls. Each call, be it function or method call, can be summarized
with four parameters:

1. arguments

2. return value

3. exception

4. side effects

Since side effects are interactions with the external state, they cover both
state before and after the call. With this in mind it is clear that a description
of a call after dynamic inspection is consistent with a theoretical view of a
call as a transformation, described in section 1.4.

Testable interactions - each interaction can be a base for a single test
case - has been marked on figure 5.2 in gray. Read on for an explanation
how those interactions are used in the test generation process.

The process of test generation can be summarized in the following three
steps (also presented on figure 5.3):

1. Each module selected by the user for test generation is queried for
testable interactions : function calls and objects. Each such interaction

49

Figure 5.3: Test generation process

describes a transformation (in case of a function call) or a chain of
related transformations (in case of an object and its method calls) that
can form a single test case.

2. Each testable interaction forms a test method, and a set of test methods
for the same group of interactions forms a test class. All four phases of a
test case are generated solely based on the information gathered during
dynamic inspection: runtime dependencies form setup and teardown,
calls form an exercise phase and expected outcome (transformation)
forms the verification phase.

3. For each newly generated test class, Pythoscope finds a proper test
file to contain it (or creates a new one if necessary) and then puts the
new test class at the end. If a test class already existed, contents of
both classes are merged. Test methods named the same can be either
skipped or overwritten, according to user’s preference.

While selection and merging steps are straightforward, the second step
deserves a detailed treatment. It can be further divided into four distinct
phases, illustrated on figure 5.4.

Figure 5.4: Creating test cases

1. Generating assertions is a process of taking the testable interaction
and converting all of its outputs (both explicit and implicit) into checks.
For example, if at runtime a function addone returned 2 for argument
1 we can form the following assertion: assert_equal(2, addone(1)).

50

The same principle applies to exceptions and side effects. Every change
to an external resource made by the testable interaction will generate
a separate assertion. Assertions usually embody both exercise and
verification phases of a four-phase test case.

2. Resolving dependencies is a step where assertions are laid down on a
timeline along with all their dependencies. It is a moment where setup
and teardown is prepared. This timeline is a test scenario, an abstract
representation of actions that will happen during testing. Refer to
section 5.9 for a list of dependency resolving rules.

3. Naming objects phase takes the test timeline and gives names to ob-
jects that need one. If an object is used only once in a test case it
doesn’t need a name. By adhering to this rule the test contents are
kept short and readable. See notes on test cases readability in the next
section.

4. Generating test contents is the last phase of constructing a test case
body. In this phase each entry on the timeline is converted to a test
code fragment. End result is a complete string of Python test code,
ready to be embedded in a test method. After that a test method is
named and put into a test class.

5.9 Test dependencies and hard-to-test code

One of the problems of test generation is resolving test dependencies. Exer-
cise and verify steps of a unit test define dependencies that need to be met in
order for the test to run successfuly. Dependencies need to be resolved recur-
sively: if object X is required by a call in the exercise step and constructing
it requires object Y, both X and Y need to be set up. Any dependencies of
Y will also have to be resolved and so on, until no more objects are needed.
The same is true for external state setup - any related side effects and objects
need to be resolved as well.

During dynamic inspection Pythoscope tracks relations between objects
and side effects that affect them. Having that information is crucial to re-
solving dependencies during test generation. Dependency resolving rules used
during test generation has been presented below.

• When a built-in composite object (like a list, a tuple or a dictionary)
is required, all its elements are required as well.

51

• When an instance of a user class is required, call to its constructor
(usually a method called __init__) is required as well.

• When a call (function and method calls are treated equally here) is
required all its arguments are required as well.

• When any kind of mutable object (be it built-in or user-defined) is
required all side effects affecting it are required as well.

• When a side effect is required, all objects it affects are required as well.

Last rule may seem redundant, but it is not: a single side effect may affect
more than one object, in which case the rule will bring the missing object
into the list of dependencies.

Test dependencies are at a heart of a problem of developer testing in gen-
eral, not only in the context of automatic test generation. Gerard Meszaros
names the problem simply Hard-to-Test Code and lists highly coupled code
as the most prominent cause6. Michael Feathers gives examples of highly
coupled code and shows how it affects difficulty of writing unit tests7. He
discusses C++ and Java programming languages, and while not all of his
examples apply to Python, some are more general. They have all been listed
below.

Irritating Parameter is a parameter of a type that is very hard to instan-
tiate or shouldn’t be instantiated in a unit test, e.g. because it is slow
or causes unpredictable side effects (or both).

Hidden Dependency is a dependency that is not on parameter list of any
function or method explicitly called in a test case, but is required for
its proper execution.

Construction Blob is case of a constructor or a call that uses a large num-
ber of parameters, to a point of becoming unreadable. Although Pytho-
scope can handle 50 parameters just as easily as 5, there is a problem
of readability of generated test cases. Refer to section 5.10 for details.

Irritating Global Dependency is similar in scope to Hidden Dependency
and notes a place where code uses a global variable or resource, which
doesn’t work well in a testing environment. Michael Feathers lists an
example of a Singleton Pattern [10] and problems it causes during test-
ing.

6Details on Hard-to-Test Code can be found in [17], p. 209.
7Examples of highly coupled code are described in [7], chapter 9.

52

Horrible Include Dependencies are specific to C++ and the problem
does not appear in Java or Python.

Onion Parameter is a parameter that has a lot of (and often deep) depen-
dencies - to create it a large number of other objects need to be created
first. Just as the Construction Blob the Onion Parameter makes the
generated test cases much less readable.

Aliased Parameter describes a case of a class where doing the Extract
Interface refactoring [9] would create superfluous number of interfaces,
which is bad design. Subclass and Override Method refactoring [7]
is presented as an alternative that avoids the problem of too many
interfaces. Since in Python Extract Interface is not needed to break
dependencies, this technique also does not apply.

5.10 Readability concerns

As mentioned in one of the previous sections, highly coupled code is a problem
for Pythoscope because of a loss in readability of generated test cases. Setup
code for objects can easily span multiple lines, dominating test contents.
There are three main properties of objects that affect readability of their
setup code, listed below.

Number of dependencies This the number of other objects the construc-
tor requires. As the list of parameters gets bigger, readability drops
significantly. Current version of Pythoscope doesn’t limit number of pa-
rameters or setup code needed, and in effect may generate convoluted
test cases. The canonical solution to this problem is using the Creation
Method pattern [17]. An object with a high number of dependencies is
called a Construction Blob (introduced earlier in this chapter).

Depth of dependencies If a constructor parameter requires other objects
to be created, which in turn require other objects, and so on, it is a case
of a deep dependency structure. One way of breaking it is by cutting
it at the first level and introducing a Test Double. Current version of
Pythoscope doesn’t use any test doubles, making Onion Parameter a
serious problem for readability of test cases it generates. Other way
to mitigate the problem is by a proper naming method. Pythoscope
names objects both for validity and readability reasons, what in some
cases works around problems caused by the Onion Parameter pretty
well.

53

Number of calls on dependencies When a Test Double is used it needs
a strict specification of behavior to adhere to. If this specification is
complicated, the test double suddenly starts to occupy a lot of space
in the test and makes the whole test case harder to read. Since Pytho-
scope doesn’t use test doubles it doesn’t have this problem, yet it is
an issue worth considering, especially since it forces a certain amount
of heuristic reasoning when deciding between generating a test with a
test double and generating a test with a real object.

Readability doesn’t only concern contents of test cases, names of test
classes and methods are also important. A good name should suggest a
behavior that is expected from the SUT and tested in this particular test
case.

Pythoscope generates name of test classes based on the name of an ap-
plication class or function. For example, all test cases for class UserAccount
will be gathered in a test class called TestUserAccount. Test cases for
function execute_transaction will be contained inside a test class called
TestExecuteTransaction.

Names of test methods are much more descriptive. In general, Pythoscope
tries to keep the names short yet unique and informative. For example, a
test case that contains the following assertion:

self.assertEqual(11, plusone(10))

will be named test_plusone_returns_11_for_10. That can be read
almost verbatim as “test that a function called plusone returns 11 when 10
is given as an argument”. Similarly, longer chains of assertions give longer
test names, e.g. this chain:

user_account = UserAccount(0)

self.assertEqual(None, user_account.deposit(100))

self.assertEqual(None, user_account.withdraw(50))

gives a test case named test_deposit_and_withdraw_after_creation_with_0.

54

Chapter 6

Pythoscope architecture

This chapter delves into technical details of Pythoscope’s implementation.
Methods of capture, analysis and test generation for code with side effects
has been described in detail in previous chapters. Here a bigger picture will
be presented - a view of the Pythoscope project itself, without the focus on
side effects. Requirements for the project are listed first, what is followed by
a list of dependencies and a description of each part of Pythoscope: from the
two inspectors, through the middle layer and ending with the test generator.
This chapter is closed by a discussion of a few chosen areas in Pythoscope
that were challenging in implementation, including topics such as portability
and performance.

6.1 Requirements and design principles for

Pythoscope

Pythoscope development was never driven only by the need to add new fea-
tures, instead a concrete set of qualities were always kept in mind. Those
qualities defined not only the architecture but also usage scenarios for Pytho-
scope.

First of all, Pythoscope should support incremental usage. A programmer
should be able to focus her testing efforts only on a subset of the system and
after that still be able to address other parts when the need arises. Moreover,
a programmer should be able to extend test suites generated by Pythoscope
without any configuration effort - modification and running of test cases
should work the usual way. When the system under inspection changes,
Pythoscope should be able to detect and isolate those changes and generate
only enough test cases to complement the already existing test suite. More
generally, Pythoscope should be usable both for generating big test suites for

55

the whole system all at once as well as iterative case-by-case test generation
based on evolving behavior of the system. The hope is to make a tool like a
text editor or a test runner, which will be used by a programmer every day,
and not a single-use toy that will be useless once the test cases are generated.

Second, Pythoscope should support a wide range of Python versions.
Legacy systems, which Pythoscope addresses, often have a lot of dependen-
cies and interpreter upgrade is not always possible. By requiring a more re-
cent version of Python, Pythoscope would be out of reach for those use cases.
Early on, a decision was made to support Python 2.3 and higher. Since dy-
namic inspection procedures are run on the same process as the legacy code
itself, this means Pythoscope also has to be written in Python 2.3. For-
ward compatibility is also of concern, although much easier to achieve than
backward compatibility. Pythoscope supports Python versions up to 2.6.

On the other hand, complexity of the dynamic inspector implementation
forced Pythoscope development to focus on a single interpreter implementa-
tion. A canonical Python implementation, CPython in version 2, has been
chosen, as the most widespread one [16]. Support for Python 3, Jython,
IronPython or PyPy, while possible in the future, is not a current focus.

Interpreter version is but a single piece of a bigger issue of dependencies
management. In more general terms, Pythoscope tries to keep its own depen-
dencies as simple as possible, so it can be installed and used on a wide variety
of systems without much work on the developer side. Right now the only
two dependencies of Pythoscope are the Python interpreter and the ctypes
library [31]. While Pythoscope supports setuptools [46], it doesn’t require
them for installation.

Of course dependencies for developing Pythoscope are wider. Here, one
needs setuptools [46], nose [36], mock [34] and docutils [32], as well as all
supported interpreter versions installed, so a whole unit test suite can be run
across all supported versions.

Last two design principles relate more closely to the Pythoscope’s ar-
chitecture and coding style than the previous ones. Modularity is a reason
for inspector-generator split and a more general tendency to maintain loose
coupling. This style of programming hopefully encourages reusability and al-
lows other projects to borrow Pythoscope’s code. For example, the inspector
could be used as a backend for a Python IDE, providing method signatures,
usage examples and debugger aids to a programmer. The generator could
also be reused, for exampe in a model checking tool [5]. The second and
related principle is simplicity. When achieved it greatly eases porting and
supports experimentation, which is crucial in any research project.

56

6.2 Pythoscope dependencies

In order to run the Pythoscope application one needs to fulfill five depen-
dencies, listed below.

• CPython interpreter

• ctypes library

• lib2to3 library

• bytecode tracer library

• pythoscope package

6.2.1 CPython interpreter

Pythoscope runs only on the canonical Python implementation called CPython1.
CPython is implemented in C and runs on Windows, Linux/Unix and Mac
OS X platforms2. CPython was the first implementation of the Python lan-
guage and is still the most popular one [16]. Since its first public release in
19913 it went through many revisions, up to the re-licensed and very success-
ful 2.x line and finally to the new, revamped and backwards-incompatible
line 3.x. Although a stable version of a 3.x line has been available since
December of 2008, 2.x line of interpreters is still in widespread use.

Pythoscope supports CPython versions 2.3 through 2.6. Compatibility
issues related to interpreter version are described on page 74.

6.2.2 Ctypes library

Ctypes [31] is a foreign function library4 for Python. It allows calling func-
tions in DLLs or shared libraries directly from Python, without a need for
an intermediary C extension. It also allows to read and write binary struc-
tures, dereference pointers and do other unsafe memory operations, normally
unavailable at Python level. Ctypes library has been a part of CPython stan-
dard library since version 2.5 and is also available as a standalone package,
supporting versions of Python 2.3 and higher.

1Per Python glossary [40].
2As listed on the Python home page [41].
3The release was numbered 0.9.0 and was posted by Guido van Rossum to alt.sources

usenet group, as mentioned in the HISTORY document in CPython source code.
4Also often called a foreign function interface (or FFI).

57

Pythoscope uses this library to access internal interpreter data, normally
hidden from a running program. Structures read by Pythoscope this way
include a wrapper objects5, generator objects6 and frame objects7.

6.2.3 Lib2to3 library

Lib2to3 was initially a library intended for a very specific purpose. Written by
Guido van Rossum, it formed a back end for the 2to3 tool [26] which purpose
is to ease transition from Python 2 to the new and backward incompatible
version 3. 2to3 can automatically convert Python 2 source code into Python
3 code. Its ability to read and write back slightly modified Python code
proved to be very useful in the context of test generation.

Figure 6.1: Structure of the lib2to3 library

The core of a lib2to3 implementation is the pytree module. In a form
of Node and Leaf class definitions it defines the structure and behavior of
the abstract syntax tree (AST for short). This tree can be traversed in
either breadth-first or depth-first manner using pre_order and post_order

methods respectively. It can also be modified by appending or replacing
existing nodes using set_child, insert_child and append_child methods
of Node. A string can be produced from the AST by simply calling the str

function on it.
The opposite conversion, from the source code to the AST, is achieved

by a parser, implemented in the pgen2 subpackage. The parser follows a

5Wrapper objects are created for visibility of a C functions at Python level, e.g. refer-
ence to a built-in function will point at a wrapper object. More details can be found in
[48], chapter 3 “Data model”.

6Generator objects are objects returned by generator functions. For more details see
[48], chapter 6 “Simple statements”, section on the yield statement.

7For a description of frame objects see [48], chapter 3 “Data model”, section on frame
objects.

58

grammar, defined in a separate file, named Grammar.txt, taken directly from
the CPython interpreter’s repository. In Pythoscope, a grammar of Python
2.6 is used.

Lastly, lib2to3 defines a query language that can be used to find and
extract certain pieces of the syntax tree. Module responsible for that task is
called patcomp, a shorthand for “pattern compiler”.

6.2.4 Bytecode tracer library

CPython has a built-in method of tracing application code, allowing the
tool builders to implement debuggers and profilers8. Bytecode tracer library
extends possibilities of CPython to trace individual bytecode instructions.
Developed in 2010 as a part of this thesis, it soon has been merged into
Pythoscope. While still usable as a separate tool it really shines when used
in combination with traditional tracing methods.

6.2.5 The pythoscope package

The pythoscope package is divided into four major parts: the inspector, the
generator, the middle layer between them and a command-line interface. The
inspector is responsible for gathering information about an application – its
logical structure – layout of modules, class definitions, function signatures,
as well as its dynamic behaviour. The generator uses that information to
generate test cases and merge them with an existing test suite. Intermedi-
ate data is stored as a collection of in-memory Python objects, serialized to
disk with the pickle module [38] when necessary. A complete tool is available
to the developer through a command-line interface.

All of the techniques used by the inspector to gather information may be
divided into two categories, depending on whether they execute the applica-
tion code or not. Static inspection refers to analysis performed without
execution of the application code. This basically means gathering informa-
tion from the source code of an application. To make the process easier,
source code is first converted to more convenient representations. Pytho-
scope uses lib2to3 parser and CPython compiler to generate abstract syntax
trees and bytecodes respectively. While the inspection of ASTs yields a lot of
information regarding structure of the code (i.e. how does it look like), byte-
code analysis may additionally provide hints about dynamic characteristics
of the code (i.e. what it does). Unfortunately, due to the dynamic nature of
Python9 even static bytecode analysis doesn’t yield enough information to

8See section 4.1 on page 28 for a detailed description of tracing hooks in the interpreter.
9Described in section 1.3 on page 7.

59

Figure 6.2: Structure of the pythoscope package

generate interesting test cases.
This is where dynamic inspection has to be applied. By running ap-

plication code in a controlled environment, different kinds of information
can be gathered, from program call graphs [23] to input-output pairs of all
functions’ and methods’ invocations, exceptions raised, as well as other op-
erations normally hidden by the CPython bytecode interpreter. That kind
of detail is necessary to generate a proper unit test case, with the necessary
setup, precise assertions and appropriate teardown, as described earlier in
the chapter on test generation10. Implementation of the dynamic inspection
is very tighly bound to the underlying language implementation. Mere diffi-
culty of implementing a dynamic inspector as well as amount of information
that can be gathered that way depends in great deal on tracing capabili-
ties of a Python interpreter. Thus, while the rest of architecture notes can
be reused in other projects similar in scope to Pythoscope, the section on
dynamic inspection is inescapably very focused on CPython.

The middle layer is what holds all information gathered at the in-
spection stage. Most of the information is stored in domain-specific objects,
defined by Pythoscope, which map to structure and behaviour of the applica-
tion under inspection. At the top, we have a Project class which holds ref-
erences to Module objects, which in turn reference Classes and Functions.
This static view is enriched with information about traced behaviour, like
FunctionCalls, MethodCalls, GeneratorObjectInvocations and so on,
each of those objects holding information about inputs, outputs, exceptions
and side effects. Combining static and dynamic view of the project allows to
derive properties of the code, and ultimatelly use that knowledge to generate
test cases.

10See chapter 5 on page 41.

60

Test generation based on data stored in the middle layer is exactly what
the test generator is responsible for. For each small subset of gathered
information a unit test case can be generated. Dependencies of each test
case are resolved, environment setup code is included and becomes a part
of the test case. For each output and change that need to be tested the
generator spawns an assertion. Finally a teardown code is included, ensuring
proper separation of test cases. From some perspective, the test generator
is a compiler that converts inspection information into Python test code.
This point of view is especially useful when implementation of Pythoscope’s
generator is considered, as many canonical compiler patterns are present
there.

6.3 Static inspector

The main role of the static inspection is to prepare ground for later dynamic
inspection. Logical structure of the program is analyzed and stored first
by the static inspector, what is followed by the dynamic inspection step,
described in the next section. But before that, static inspection techniques
will be described in detail.

Figure 6.3: Static inspection process

6.3.1 Analysis of packages and modules on the file sys-
tem

Logical structure of a Python program is defined by layout of source code
files on the file system as well as by the contents of those files. Aptus, a sam-
ple medium-sized Python application is used as an illustration11. Aptus is a

11Full source code of the Aptus program can be obtained from http://nedbatchelder.

com/code/aptus/ under the MIT license.

61

Mandelbrot set viewer and renderer, written by Ned Batchelder in Python.
It uses three popular Python libraries: Numpy for calculations, PIL for im-
age rendering and wxPython library for GUI. When compiled and installed,
Aptus directory structure looks like this:

aptus/ Top-level package

__init__.py Initialize the aptus package

cmdline.py

compute.py

engine.so*

ggr.py

gui/ Graphical user interface subpackage

__init__.py

computepanel.py

dictpanel.py

help.py

ids.py

juliapanel.py

mainframe.py

misc.py

palettespanel.py

pointinfo.py

resources.py

statspanel.py

viewpanel.py

youarehere.py

importer.py

options.py

palettes.py

progress.py

settings.py

timeutil.py

tinyjson.py

The aptus package contains an initialization file (which must always be
called __init__.py and be present in the package directory12), ten Python
modules, one module compiled from C (engine.so) and one subpackage
(gui/), which in turn contains its own initialization file and 13 more Python
modules. The logical structure, as visible to the running Python program,

12More on module and packages can be found in the chapter 6 of “The Python Tuto-
rial” [44].

62

follows almost exactly the file system structure. For example, to import the
mainframe module that resides in the gui subpackage, one must use the
following import statement:

import aptus.gui.mainframe

At import time there is more to it than the directory structure of the ap-
plication itself. Most applications use external libraries (or at least Python’s
standard library) which reside in a global environment, so in reality all im-
ports go through an importer that dynamically resolves all names. This
doesn’t matter in most cases though - since all modules are safely contained
inside the aptus package, the application structure and behaviour of its im-
ports can be predicted by looking at the file system.

All Python modules are discovered by recursively descending project di-
rectory tree. All files with .py extension are collected and returned. Bi-
nary modules (like the engine.so from Aptus) are ignored, because their
structure cannot be inspected as easily as the structure of the pure Python
modules. Internal files of version control systems (like .svn/ directories in
case of Subversion) are ignored as well. In the end, Pythoscope holds a list
of all Python modules inside a project. Contents of those modules are not
inspected directly - instead Pythoscope uses ASTs and bytecode to gather
information.

6.3.2 Source code analysis

All source code, especially from the point of view of a programmer, is a
sequence of characters. While this representation is easy to modify and
transfer, it is not efficient for program evaluation or compilation. Because of
that compilers use a syntax tree during the semantic analysis phase. Syntax
trees contain all information needed to check13 and compile a given unit of
code. They were also shown to be very useful representation for just-in-time
compilation inside interpreters, even more so than bytecode [12]. The same
principle applies to static inspection performed by Pythoscope.

Pythoscope uses lib2to3 library described earlier14, but not directly. Two
additional layers has been developed: one for traversing ASTs, named astvisitor,
and the other for constructing and modifying them, named astbuilder.
Static inspector uses both: parse function from the astbuilder module is
used to convert source code to a syntax tree, while the ASTVisitor class

13Those checks include but are not limited to checking for type errors and determining
variables’ binding.

14See 6.2.3 on page 58.

63

from the astvisitor module is used to analyze it. Both modules are also
used during test generation, see section 6.6 on page 73 for more details.

During static inspection each file identified as holding Python code, as
described in section 6.3.1, is converted to AST and then analyzed. A valid
AST is traversed in search of standard building blocks of an application:
classes, functions, etc. ASTVisitor class from the astvisitor module, when
subclassed, can be used to collect information about elements of a program.
Static inspector uses two such subclasses. One, called ModuleVisitor is used
to identify program elements at the module level, while the ClassVisitor

is used to identify elements at the class level.
Elements of the program structure identified at the module level have

been summarized in table 6.1.
At the class level, where ClassVisitor is used, all but the method defini-

tions are skipped. This means inner classes are currently ignored by Pytho-
scope as an implementation detail of a class to be used internally by its
instances.

As the AST is traversed and elements are identified, Pythoscope creates
its own tree of objects. Details of objects created at that point can be found
in section 6.5 on page 70. The important thing is that, once static inspector
finishes its work on a file, Pythoscope has a reference to an instance of a
Module class that holds all information about the structure of a module, what
includes, but is not limited to, a list of all defined classes and functions.

6.3.3 Bytecode analysis with CPython compiler

There are cases where AST inspection is either insufficient or too convoluted,
at least when compared to bytecode inspection. In those cases Pythoscope
uses CPython compiler facilities to collect the necessary information.

An example of such area is a case of differentiating between normal func-
tion and generator functions15, implemented in Pythoscope by a function
named is_generator_definition from the inspector.static module. In
Python, a generator definition can be identified by the presence of the yield

expression. This means that this code defines a normal function:

def function():

return 42

while the following defines a generator:

15Generator functions are described in detail in [48], chapter 6 “Simple statements”,
section on the yield statement.

64

Table 6.1: Elements of a program at the module level
Element Example Description

class
definitions

class AClass (ob j e c t) :
pass Three elements of a class are

identified and remembered
by Pythoscope: its name,
its ancestors (superclasses)
and a list of methods.

function
definitions

def a f u n c t i o n (arg1 , arg2) :
return 42 Besides function name and

a list of parameters’ names
Pythoscope keeps a refer-
ence to the function body
for later inspection. Inspec-
tion of the function body
may reveal, among other
things, whether a function
is pure or not.

import
statements

import os

from s e t s import Set Imports are parsed, so that
when new ones are added
by the test generator, dupli-
cates can be avoided.

__main__

snippet

i f name == ’ ma in ’ :
u n i t t e s t . main () The documention for

unittest [49] suggests the
use of a __main__ snippet
and in fact that is a very
common way to run tests
written in unittest, as can
be shown on the example of
CPython standard library.
Pythoscope uses that snip-
pet, if present in a file, as a
reference point for adding
new test classes. The idea
is to keep that snippet at
the very bottom of a file at
all times.

65

def function():

yield 42

While it would be possible to traverse the syntax tree of the function
body to find a yield expression, a more straightforward method is to com-
pile the function definition and inspect attributes of the generated bytecode.
The attribute useful in this case is called co_flags. When bit 0x20 of this
attribute is set the function is a generator.16

6.4 Dynamic inspector

From the test generation perspective dynamic inspection is the phase where
most data is gathered. Objects being created, functions invoked, exceptions
being raised and caught, locks acquired and freed, files created and extended
- all of those actions define a behavior of a program, which forms a base for
test generation. The job of a tool like Pythoscope is to carefully intercept
and interpret those actions in their current dynamic context, so that later
each single piece of behavior can be replayed in a unit test.

Figure 6.4: Dynamic inspection process

6.4.1 Ways to invoke dynamic inspection

There are two main ways to invoke the dynamic inspector in Pythoscope:
through an entry point or via a use of a special code snippet. First method al-
lows Pythoscope to invoke dynamic inspection when it needs to, what makes
it similar to the way static inspection is done. Second method puts more
power into the hands of a programmer: dynamic inspection is invoked when
the programmer manually runs her application. Both methods give the same
end results in terms of amount and precision of gathered information.

Point of entry is a small Python module that calls the rest of the ap-
plication code that needs to be inspected. If there is a main function in the

16Per [48], chapter 3 “Data model”, section on code objects.

66

application, a call to it would make a good entry point. Existing high-level
regression tests are also good candidates for becoming entry points. Pytho-
scope imports entry points from directory .pythoscope/points-of-entry/.
A point of entry should essentially be a Python script, that when invoked
manually calls into the system or its part. The reasons for the existence
of entry points are twofold. First, they provide Pythoscope with a working
starting point for further dynamic inspection. Second, they are a signal from
a developer that wrote the entry point that the code in question is safe, i.e.
it won’t destroy important data, initiate a production deploy or something
similarly disastrous.

Code snippet constitutes an easier and quicker alternative to entry
points. All the programmer needs to do is to find places in the applica-
tion code where it begins execution and the place it ends. At the top of the
first application module to be imported, which is usually the first place to
be run by the Python interpreter, a programmer needs to place the following
snippet:

import pythoscope

pythoscope.start()

It imports pythoscope and initializes the dynamic inspector. All code
executed after that line will be traced and remembered by Pythoscope. As
the application is running, Pythoscope analyzes and keeps all information
in memory. Thus, before the application exists, that information has to be
saved into disk. A programmer must put in another snippet, this time at the
place where the application ends execution. Most of the time this place is
simply at the end of the main script file, but sometimes it is a line before a
call to sys.exit.

pythoscope.stop()

Once those two snippets are placed, a programmer may prepare the en-
vironment and run her application in the usual way. All interactions with
the application are intercepted by Pythoscope and saved to disk right before
application’s exit. After that a programmer may use the pythoscope tool to
generate test cases based on just gathered data.

It is important to understand the distinction of context between both
approaches. With points of entry, a user runs the pythoscope command,
which in turn may (if it needs to) import and call into the entry point’s
code. Pythoscope tool is in charge here. In fact, many entry points may be
invoked one after another (or the same entry points multiple times) during

67

a single run of a pythoscope tool. On the other hand, when using the code
snippet, it is the application under inspection that is running, and pythoscope
acts as a library that merely installs its hooks after the application starts and
saves the results right before the application ends.

6.4.2 Tracing calls and bytecodes

The layer that is closest to the interpreter during dynamic inspection is the
tracer. The tracer is the receiver of events originating from the interpreter.
All the tracer does is enriching trace data with additional information, to be
passed and interpreted by higher layers of Pythoscope. See the next section
to learn more.

Implementation of the bytecode tracer for CPython has been described
in Capture and analysis of side effects chapter, in section 4.8. History and
dependencies of the bytecode tracer has been mentioned in section 6.2.

6.4.3 Object and call analysis

On top of tracer an analysis layer has been constructed. From the stream
of events reported by the tracer it serializes objects, builds call graphs and
handles side effects. This is the point where raw tracer data is converted into
domain objects, like FunctionCall.

A base for correct inspector work is the static view of the project, con-
tainted within the Project tree17. Based on raw execution data provided by
the tracer the inspector finds an object that is acted upon and annotates
it with just aquired dynamic information. Below follows an example of a
tracer event being recognized and saved as a FunctionCall object within
the Project tree. Points 1 through 5 are handled by the tracer, while points
6 through 11 are responsibility of the inspector. The whole process has also
been illustrated on figure 6.5.

1. ’call’ event is reported by the Python interpreter with the reference to
the current frame

2. the tracer makes sure that the event is a function call (Tracer.should_ignore_frame)

3. tracer extracts function name from the frame (frame.f_code.co_name)

4. tracer extracts call arguments information from the frame (input_from_argvalues)

17Refer to section 6.5 on page 70 for details.

68

Figure 6.5: Call analysis example

5. tracer calls function_called on an Inspector object with function
name, arguments, code and frame object as arguments

6. inspector passes all arguments to create_function_call method of
an Execution object

7. Execution object extracts filename from the code and looks for a cor-
responding Module in the Project tree

8. if the Module is found, its contents are used to look for a Function

object corresponding to the name that was passed

9. if the Function is found, a FunctionCall object is initialized and
attached to the rest of the Project tree

10. arguments of the function call are serialized using serialize_call_arguments
method of the Execution object

11. inspector puts the call on the CallStack, what eventually builds a full
call graph

This example highlights an important feature of the Inspector class: it
is very thin and delegates most of the work to other classes.

69

A CallStack object tracks calls, returns and exceptions, forming a virtual
call stack that corresponds to the interpreter’s call stack. The difference
between the two is that interpreter “forgets” about previous stack levels that
were already unwound, while the CallStack keeps all of this information. In
effect, a complete call graph is constructed. Nodes of this graph are ordered,
so that it is possible to determine order of all calls.

An Execution object represents a single run of an application, no matter
the method18. It holds a reference to the Project tree and queries it when calls
are made and objects are serialized. In this way static information greatly
simplifies and channels effort during dynamic inspection. Static information
acts as a reference point for all information gathered during runtime.

The Inspector object is discarded once the inspection is done and effects
of the run are contained within the Execution object. So the Execution ob-
ject not only registers the events, but also is responsible for storing and
browsing through them. Each Execution object forms a net of calls and dy-
namic connections built on top of the static Project tree. Those interweaving
nets are then used by the test generator. More on the dynamic section of the
Project tree can be found in section 6.5 on page 70.

6.5 The middle layer

Data gathered by the inspector is stored in a tree-like structure, serialized
to disk with the pickle module [38]. It has been presented on figure 6.6.
Part of the tree that is constructed during static inspection is in white, while
gray has been used to mark elements that are created only during dynamic
inspection.

The root of this object tree is an instance of a Project class. Besides some
bookkeeping data it contains a set of references to Module instances, which
represent Python module of the inspected application. There is no artificial
distinction between application modules and test modules. All modules can
contain both application code and test cases and Pythoscope was constructed
to work with this arbitrary arrangement. Each module contains a set of
domain objects, each representing a single element of a program: a class, a
function or a test class.19 Classes are containers for methods.

Project delegates management of CodeTree instances to a CodeTreesManager
instance. Refer to section 6.10 for details and notes on performance. Each
CodeTree instance corresponds to exactly one Module instance.

18For description of different methods of invoking the dynamic inspection see 6.4.1.
19See table 6.1.

70

That structure information is later enhanced with dynamic data. At the
beginning of dynamic inspection Execution instance is created to act as a
root for all objects created during this round of tracing. This way Pythoscope
can gather and manage multiple execution contexts and differentiate between
them without problem. During dynamic inspection two concurrent processes
occur: calls are recorder on a call graph and objects are serialized and laid
out on a timeline20. Those calls and objects are at the same time hooked
up to the Project tree, so the test generator has an easier time finding and
using them. For example, a Function object contains references to all calls
that were registered and UserObjects are connected with Class instances
they were instantiated from.

The most basic unit of an execution is a Call object. Pythoscope iden-
tifies four different types of calls in Python: function calls, method calls,
generator invocations and calls into C21. Each call includes reference to the
caller (which is an another Call), serialized call arguments, references to
other calls made inside this one (subcalls), list of side effects made by this
call, and finally either an output value or a raised exception (serialized in
either case).

As just there are many types of Calls there are many types of serialized
objects. Figure 6.6 shows inheritance hierarchy for SerializedObject and
its derivatives. Only UserObject is connected with the rest of the tree -
other types represent types built into the interpreter and their usage during
test generation doesn’t require any context information in regards to the rest
of the application.

Although filled-in separately, both models (the static model and the dy-
namic model) share structure which is essential for the generator work to be
effective. Only combination of both inspection sources gives good results.

20Timestamping objects is crucial for later test generation, refer to section 5.8 on page 48
for details.

21There is also a possibility of calls Pythoscope can’t classify - they are saved as
UnknownCalls and are not bind to any other middle layer structure. They presence is
motivated only by the need to not leave any holes in the call graph.

71

Figure 6.6: Middle layer class diagram

72

6.6 Test generator

This section describes details of the test generator implementation. For a
high-level overview of the test generation process, see section 5.8 on page 48.

Test generator is divided into many submodules, of which the most im-
portant 9 will be described here. Overall structure of the test generator
architecture has been shown on figure 6.7.

Figure 6.7: Submodules of the test generator

Each submodule takes care of one step in the test generation process,
as described in section 5.8. Combined, they convert information gathered
by the inspector into valid test cases. All submodules have been described
below, in the order they are invoked during test generation.

Selector chooses suitable testable interactions based solely on the data con-
tained within the Project tree.

Assertions submodule takes each testable interaction and prepares a set
of assertions that validate its behavior. Many kinds of assertions are
supported, including equality assertions, exception assertions and asser-
tion stubs. After that, assertions are expanded into a test case timeline
which contains all statements, assertions and possible dependencies of
a test case.

Cleaner purges redundant dependencies from the test case timeline.

Optimizer takes the timeline and compresses it even further by combining
sequences of operations. For example, instead of replaying side effects
on a list, like so: x = []; x.append(1); x.append(2) the optimizer
compiles that down to a single list creation statement: x = [1, 2].
Such optimizations never change semantics of a test case, only improve
its readability.

Objects namer annotates the timeline with names for objects that need
them. Each object gets a unique yet descriptive name, as an another
method of keeping tests readable.

73

Builder takes the test case timeline and compiles it down to a single CodeString,
which will constitute the test case body. It uses the constructor as
its submodule. See also section 6.11 for a further description of the
CodeString class.

Constructor has a very specific purpose: it compiles a Call object into a
CodeString, in this way turning interactions captured at runtime into
executable code.

Case namer is responsible for giving names to newly generated test classes
and methods. The problem of naming test cases has been described in
more detail in section 5.10.

Adder merges new test cases into the existing test suite. At the end of the
code generation process, the final CodeString is converted to AST. In
this form the generated code can be merged into rest of the test suite:
a test method can be made a part of a test class, while a test class can
be put into a right place in a module. Lib2to3 is utilized here again,
as it allows extending source code of existing modules.

6.7 Compatibility issues

Pythoscope supports Python interpreter’s versions 2.3 through 2.6. This im-
poses certain limits on the way Pythoscope is implemented. First of all, only
features present in 2.3 can be used during coding. This means language fea-
tures like decorators22, generator expressions23, conditional expressions24 or
the “with” statement25 cannot be used. Moreover, any differences between
implementations of features that existed since Python 2.3 have to be han-
dled by Pythoscope. One such example is support for sets in the standard
library. In Python 2.3 this data structure is supported by a pure Python
implementation in the sets module. Python 2.4 and higher has a built-in
type set implemented in C. Old sets module is still present, but importing
it raises a DeprecationWarning in Python 2.6.

22More on decorators can be found in “What’s New in Python 2.4” document by A.M.
Kuchling [15], as well as in PEP-318 [24].

23Generator expressions were introduced in Python 2.4 and described in detail in PEP-
289 [13].

24Conditional expressions were introduced in Python 2.5 and described in detail in PEP-
308 [21].

25The “with” statement was introduced in Python 2.5, after adding a future direc-
tive to code. Since Python 2.6 the directive is no longer needed and support for “with”
statement is enabled by default.

74

For reasons mentioned the compatibility code is scattered across the whole
codebase. Each compatibility code is annotated with a comment describing
in detail differences between versions. Functions and types added in later
versions of Python that are nevertheless needed in Pythoscope has been back-
ported and gathered in a module called compat. It includes functions like
sorted, all, any and groupby that are useful iteration idioms. Moreover, all
of the functions in util module are implemented in an interpreter-agnostic
way.26 Even the tracing mechanism can differ between versions. The tracer

module has two main classes: StandardTracer and Python23Tracer which
is a subclass of the former. StandardTracer is used under most interpreters.
Because Python’s 2.3 tracer reports “exception” events differently a specific
version is needed that will work around the differences and make them trans-
parent to the rest of the code base.

To keep Pythoscope working for all those interpreter versions a unit test-
ing suite is kept up-to-date and runnable across all versions during develop-
ment. Before commiting any change to the code base, a full test suite has to
be run on all supported versions of CPython, and only after all compile and
pass without errors, the change is accepted.

6.8 Comparison of parsing libraries for Python

Table 6.2 lists available libraries capable of generating and modifying syntax
trees for Python code.

After considering all pros and cons of each library, lib2to3 was chosen as
the only library capable of generating from a modified AST a source code
that would still contain original whitespace and comments. All other libraries
discard whitespace and comments, so a full reconstruction of a file based on
AST is not possible. Since Pythoscope is intended to be used in an iterative
manner, ability to add test cases to existing classes is vital. With lib2to3
Pythoscope can not only analyze code, but also discover existing test suites
and extend them with new test cases.

6.9 Performance implications of dynamic analysis

Important aspect of dynamic inspection is the ability to distinguish objects at
runtime. Garbage-collected environment without a direct access to memory

26An example of such a function is generator has ended. Interpreter versions 2.5 and
2.6 expose an interface that allowed this function to be implemented fully in Python, but
versions 2.3 and 2.4 lacked that interface, forcing an implementation at a lower level, via
means of a C extension.

75

Table 6.2: Abstract Syntax Tree libraries in Python

Library name Characteristics

compiler module [29] part of the standard library
deprecated
does not preserve comments or whitespace

ast module [27] available only in Python 2.5 and higher
does not preserve comments or whitespace

byteplay [28] external package
does not preserve comments or whitespace

peak.util.assembler [37] external package
does not preserve comments or whitespace

lib2to3 external package
written in pure Python, which makes it slower
than parsers in C, but more portable
preserves comments and original whitespace

makes this requirement a challenge.
To illustrate this problem consider an example of a function append_and_return

presented below.

def append_and_return(x, e):

x.append(e)

return e

When called in the following context:

alist = []

append_and_return(alist, 1)

the tracer will, among other things, catch the following events:

• call of the append_and_return function with a list as a first argument
and 1 as the second, and

• call to the append method on the same list object with a number 1 as
an argument.

In order to link those two events together the inspector needs to know
that the list passed to append_and_return is the same object as the list

76

which append is called on. This recognition is crucial to generation of test
cases that deal with side effects. In this case, catching a mutation of an
object during append is necessary to register the side effect.27 Mutation gets
us back to the problem of object’s identity.

Python documention describes a function called id used to determine
identity of objects at runtime:

Return the “identity” of an object. This is an integer (or long
integer) which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping life-
times may have the same id() value.

In CPython value returned by id is simply the address of an object in
memory. The object’s lifetime limitation of this utility function is crucial. It
is very likely that a new object will get an ID number of an old, just-garbage-
collected one. In context of Pythoscope, this could lead the inspector to
assume connections between objects that in reality are distict, which would
inevitably lead to generation of faulty test cases.

To overcome this problem, Pythoscope’s dynamic inspector has to pre-
vent all serialized objects from being garbage collected. The easiest way to
accomplish this is by holding a reference to them until the run is completed.
Once the run is finished all references are released allowing the garbage col-
lector to free unused objects.

This technique, while allowing correct operation of the dynamic inspector,
has a high memory footprint, and in extereme cases could cause the otherwise
working application to crash because of memory shortage. This is a general
problem of profiling - observation is never entirely nonintrusive, and for each
method of profiling a corner case exists with results which differ depending
on whether the program is running with profiling or not.

Higher memory use is not the only side effect of running the inspector,
another one is longer execution time. All operations performed by a program
need to be recognized and registered, what occupies precious processing time.
Time spent in the inspector is time taken away from the application, which
means it will run significantly slower. It is not harmful by itself, but be-
comes important when time plays a factor in the application. For example,
a network connection timeout may occur, caused by longer processing time,
a situation which would not normally happen.

27For a description of mutation as a type of side effect, see 3.1.1 on page 21.

77

6.10 Efficient management of syntax trees

High memory footprint of the AST structures severly crippled performance
of the early versions of Pythoscope. Big projects with lots of modules and
objects inside them could spawn big pickle files, which in turn caused very
high pythoscope startup times. Even 10 Mb pickle file on a modern computer
caused a noticeable slowdown. While pickle is a very friendly storage method,
it has two main flaws. First, it is inefficient storage in terms of memory and
processing needed for read/write operations, at least compared to a dedicated
data file format or any of the popular databases. Second, cherry-picking of
data is not possible - each time the whole pickle file has to be read into
memory before usage. This is unfortunate for Pythoscope, which uses only
a small subset of data at any given time.

Since most of the memory was being taken by lib2to3 ASTs, the solution
was to pull them out from the main Project object into a separate CodeTree
objects, which could be pickled and stored separately. This way, the main
pickle file could remain small and thus fast to operate on, while ASTs could
be written and read on-demand. This improvement made Pythoscope ready
to be used on big projects - a memory usage during full static inspection
stays within a stable limit, disregarding number or size of modules under
inspection. Ryan Freckleton reported [45] a stable memory usage of about
30Mb during Pythoscope run on the Python’s standard library modules.

Implementation of that storage scheme lies within the CodeTreesManager
class. The manager handles CodeTree instances through four basic opera-
tions. An AST represented by the CodeTree instance can be remembered
(stored on the file system), forgot (permanently deleted) and recalled (re-
stored from the file system into memory). Moreover, a manager supports a
clear_cache method, which frees memory of all ASTs currently residing in
memory. Currently, only a single AST is ever kept in memory at once. When
another one is needed, current one is saved to disk and freed, making room
for the new one.

The main pickle file is stored in .pythoscope/project.pickle, while
the AST pickle files lie inside the .pythoscope/code-trees/ directory.

CodeTree objects are more than mere Abstract Syntax Trees for a module.
Beside the tree, instances of this class also contain references to interesting
elements of the module, in particular function and class definitions, __main__
snippet location (see table 6.1) and location of import statements. Thanks to
those references it is trivial for the generator to replace a piece of code, like a
test class, with its extended version, without affecting the rest of the module.
Because of that CodeTree instances could be called ASTs with annotations.

78

6.11 CodeString, a basic test case building block

It has been mentioned that abstract syntax trees are a convenient representa-
tion for purposes of static inspection.28 The same is not true from the point
of view of code generation. In Python, as well as in other non-homoiconic29

scripting languages, it is easier to operate on strings rather than on syntax
trees. For this reason in Pythoscope code generator does most of its work
on strings. Along with the code itself, two additional pieces of information
are passed: set of imports needed for the code to run and a flag that de-
notes whether the code is runnable or just a template. Templates are used
when real code cannot be generated - usually because of lack of data. The
string, set of imports and a flag are kept together in a CodeString instance.
Instances of this class behave like strings, but also support special concate-
nation operations that bear the set of imports and the completeness flag in
mind. For example, concatenation of two CodeStrings also merges sets of
their imports, so that the resulting CodeString requires all imports that any
of the components needed. A concatenation of an incomplete CodeString

and a complete CodeString creates a new incomplete CodeString. Through
the use of those special operations correctness of the generated code is en-
sured.

28Refer to section 6.3.2 on page 63.
29Source code of a program written in homoiconic language is also a data structure in

a primitive type of the language itself. This makes it easy for such program to operate
on other programs without resorting to intermediary representations, like abstract syntax
trees.

79

Chapter 7

Survey on the quality of
generated test cases on the
example of five open source
projects

7.1 Testing projects

Success of this thesis has been measured by testing Pythoscope on five sample
applications. Selection criteria for those projects were the following:

1. A project has to be open source, as Pythoscope works only with source
code, and a mere binary is not enough.

2. A project has to be easily installable and work as advertised in doc-
umentation. That excludes all packages that would not install on the
test machine or ones that had critical bugs (one example of such a bug
may be missing a crucial file in the source tarball).

3. Finally, a project has to be without tests. Process of writing code
with tests is different and the resulting code looks different than a code
written without tests.[4] Since generating tests for legacy systems is
Pythoscope’s main focus, legacy projects were chosen.

Moreover, care was taken to choose projects from a vast area of appli-
cation. In particular the author wanted to include at least one project that
deals with external APIs and one that does processing-intensive operations.
The final selection can be found in table 7.1. To give an idea of relative

80

sizes of each project, source code metrics has been gathered and presented
in table 7.2. Lines of code counts exclude empty lines and comment lines.

Table 7.1: Projects chosen for testing

Name Version Description

Reverend r17924 A simple Bayesian classifier
freshwall 1.1.2 GNOME wallpaper changer
http-parser 0.2.0 HTTP request/response parser
isodate 0.4.4 An ISO 8601 date/time/duration parser and formater
pyatom 1.2 A Python library for generating Atom 1.0 feeds

Source code for all of the projects can be downloaded from the Python
Package Index, at http://pypi.python.org.

Table 7.2: Code metrics for sample projects

Name Lines of Code Functions no. Classes no. Methods no.

Reverend 936 3 15 101
freshwall 1223 55 18 99
http-parser 411 4 7 33
isodate 925 18 5 24
pyatom 341 3 2 13

7.2 Testing environment

Testing has been performed on a PC box running Ubuntu 10.10 with Python
2.6.

81

7.3 Testing procedure

The process of testing a single application can be described in six steps:

1. extract the application into a temporary directory

2. configure the package, install any missing dependencies and compile
any C modules

3. do one of the following:

(a) put points of entry that were prepared beforehand into
.pythoscope/points-of-entry directory OR

(b) put pythoscope code snippet1 into the application binary and run
the application on a sample data prepared beforehand

4. run pythoscope to generate tests for all application modules

5. execute generated tests and gather coverage information

6. remove the temporary directory with all its contents

Points of entry and sample data were all based on usage examples included
in the applications’ documentation. This way Pythoscope’s capabilities were
tested on a real-world scenario, yet not requiring any special preparation
from the developer’s side.

Number of points of entry and examples for snippet executions for each
project were summarized in table 7.3.

Table 7.3: Projects and their testing methods

Project Number of points of entry Code snippet executions

Reverend 2 0
freshwall 0 1
http-parser 0 2
isodate 1 0
pyatom 1 0

1See 6.4.1 on page 66 for more details on the pythoscope code snippet.

82

7.4 Results

The results for each application are a set of the following metrics:

• inspection outcome (success/failure)

• test generation outcome (success/failure)

• total number of unit tests generated (including passing, failing and
stubbed test cases)

• number of failing test cases

• number of test stubs

• line coverage percent2 gathered by the coverage plugin for nose test
runner[30].

Actual results for the five sample applications have been presented in
table 7.4.

Table 7.4: Testing results by project

Project Inspection Test generation Unit tests failing stubs Coverage

Reverend success success 35 2 16 38%
freshwall success success 236 9 104 58%
http-parser success success 22 0 19 27%
isodate success success 51 6 31 50%
pyatom success success 20 0 7 81%

For comparison, results of the same tests made on the last version of
pythoscope before this thesis (which was 0.4.3 released on February 28th
2010) has been presented in table 7.5.

2Refer to section 2.6 for the meaning of this metric.

83

Table 7.5: Pre-thesis testing results by project

Project Inspection Test generation Unit tests failing stubs Coverage

Reverend failure n/a n/a n/a n/a n/a
freshwall static: success success 126 0 126 0%

dynamic: failure
http-parser static: success success 29 0 29 0%

dynamic: failure
isodate success success 47 11 31 34%
pyatom success success 20 1 7 53%

7.5 Sample generated test cases

Three examples of generated test cases will be used to describe some of
the characteristics and capabilities of the new Pythoscope, improved in this
thesis. First example shows a test stub: an incomplete unit test, second a
passing (correct) test case, while the last example shows a failing (erroneous)
one together with the test runner’s output.

Figure 7.1: Example of a test case stub: http-parser

1 from nose.tools import assert_equal

2 from http_parser.reader import SocketReader

3

4 class TestSocketReader:

5 def test_readable_and_readinto_after_creation_with__socketobject_instance(self):

6 # _socketobject = <TODO: socket._socketobject>

7 # socket_reader = SocketReader(_socketobject)

8 # assert_equal(True, socket_reader.readable())

9 # assert_equal(3961, socket_reader.readinto(<TODO: __builtin__.bytearray>))

10 pass

84

Figure 7.2: Example of a passing test case: pyatom

1 import datetime

2 from nose.tools import assert_equal

3 from pyatom import AtomFeed

4 from itertools import islice

5

6 class TestAtomFeed:

7 def test_add_and_generate_and_to_string_after_creation_with_entries_equal_None_

8 and_kwargs_equal_dict_and_title_equal_My_Blog(self):

9 atom_feed = AtomFeed(’My Blog’, None,

10 author=’Me’,

11 feed_url=’http://example.org/feed’,

12 subtitle=’My example blog for a feed test.’,

13 url=’http://example.org’)

14 dt = datetime.datetime(2011, 4, 27, 10, 15, 29, 201154, None)

15 assert_equal(None,

16 atom_feed.add(author=’Me’,

17 content=’Body of my post’,

18 content_type=’html’,

19 title=’My Post’,

20 updated=dt,

21 url=’http://example.org/entry1’))

22 assert_equal([u’<?xml version="1.0" encoding="utf-8"?>\n’,

23 ..., u’</feed>\n’],

24 list(islice(atom_feed.generate(), 23)))

25 assert_equal(u’<?xml version="1.0" encoding="utf-8"?> ... </feed>\n’,

26 atom_feed.to_string())

27 assert_equal(dt, atom_feed.updated)

85

Figure 7.3: Example of a failing test case: isodate

1 from nose.tools import assert_equal

2 from isodate.isotzinfo import build_tzinfo

3 from isodate.tzinfo import FixedOffset

4

5 class TestBuildTzinfo:

6 def test_build_tzinfo_returns_fixed_offset_instance(self):

7 assert_equal(FixedOffset(-4, 0, ’-04’), build_tzinfo(’-04’, ’-’, 4, 0))

Test runner output after running this test case:

==

FAIL: test_isodate_isotzinfo.TestBuildTzinfo.test_build_tzinfo_returns_fixed_offset_instance

--

Traceback (most recent call last):

File "/usr/local/lib/python2.6/dist-packages/nose-0.11.1-py2.6.egg/nose/case.py", line 183,

in runTest

self.test(*self.arg)

File "isodate/tests/test_isodate_isotzinfo.py", line 23,

in test_build_tzinfo_returns_fixed_offset_instance

assert_equal(FixedOffset(-4, 0, ’-04’), build_tzinfo(’-04’, ’-’, 4, 0))

AssertionError: <FixedOffset ’-04’> != <FixedOffset ’-04’>

86

7.6 Types of side effects handled by Pytho-

scope

Side effects described in chapter 3 have been implemented in varying degrees.
This section will touch details of that implementation. All of the following
has been summarized in table 7.6.

Mutation of built-in types has been completely solved in term of Pytho-
scope mechanisms, but the actual support has been implemented only for
operations on lists. Adding support for a new data type will require only
declarative descriptions of all methods given data type defines.

Instance variable rebiding is handled properly both during dynamic in-
spection and test generation. Problem with tracking dependencies mentioned
in the previous section is a more general one, as it applies to all kinds of
references, including globals and class variables, thus leaving assessment of
instance variable rebiding support at “full”.

Similarly global variables read and rebiding is fully supported. As de-
scribed in section 5.3 on page 44, global variables accesses are mapped to an
appropriate setup and teardown code.

Class variables are inspected properly, just like instance variables, but
currently Pythoscope misses the code needed for generation of test cases
that include class variables manipulation. This may cause Pythoscope to
generate failing test cases. Thus the support for class variables read and
rebiding is only partial at this point.

Just like Pythoscope requires custom code to support new data types, the
situation is the same for keyboard input and file system access. Currently
the support for those functions is missing from Pythoscope.

Terminal output has a partial support, because all prints are inspected,
but that information is not used in Pythoscope during test generation.

87

Table 7.6: Types of side effects handled by Pythoscope

Side effect Support in Pythoscope

Mutation of a built-in type Partial (not all types)

Instance variable rebinding Full

Global variable read Full

Global variable rebinding Full

Class variable read Partial (faulty generation)

Class variable rebinding Partial (faulty generation)

Keyboard input No

Terminal output Partial (only inspection, no generation)

File system access No

88

7.7 Conclusions

Results presented in chapter 7 indicate that the method of generating test
cases based on a combination of static and dynamic analysis described in this
thesis is capable of generating tests that handle most kinds of side effects.

The new bytecode tracer (first goal of this thesis, as per section 1.5.1)
and its usage inside Pythoscope doesn’t cause problems during inspection
and generation. Despite its highly experimental status Pythoscope seems to
behave rather stable across many different types and sizes of code bases. In
the experiment Pythoscope handled without a flaw both pure Python code
(like pyatom) and applications that mix Python and C code (like http-parser).

Side effects extension to Pythoscope’s inspector and generator
(second and third goal of this thesis, as per sections 1.5.2 and 1.5.3) has
been partially implemented - problems and implementation details has been
described in the previous section 7.6.

Finally, a model of analysis for side effects in Python (last goal of
this thesis, as per section 1.5.4) has been described in detail in chapter 4.
The model is very specific to CPython, so future improvements may include
extending it to other Python implementations, or even other dynamic pro-
gramming languages, like Ruby or Perl.

Improvement in generated test cases quality is clearly visible by compar-
ing the two sets of results: for the new Pythoscope (table 7.4) and a version
before this thesis (table 7.5). More real test cases (as opposed to stubs) are
generated, what directly affects the coverage values which turn up higher
than before. Dynamic inspection is more reliable: the old Pythoscope failed
dynamic inspection on 3 out of 5 projects tested, while the new one correctly
inspected all five.

Coverage value and ratio of stubs to real test cases vary greatly between
projects (in particular coverage varies from 27% to 81% in this experiment).
Careful study showed that this value is strictly dependant on the quality of
point of entry and the test data that was used during inspection. Points
of entry or test data that cause the application to traverse most of its code
branches will generate high coverage values and a high number of real test
cases. On the other hand, a point of entry that invokes only a subset of the
whole application will result in a low coverage value of the generated test
suite.

Standard library objects require extension on the Pythoscope’s side itself.
If the support is implemented they are handled well, otherwise Pythoscope
puts stubs in their place. Two sample test cases quoted in section 7.5 provide
an explanation. The pyatom sample test case, on figure 7.2, shows how
Pythoscope properly captured and was able to recreate a datetime object,

89

from the datetime library. The object is created on line 14. At the same
time, http-parser sample test case, on figure 7.1, shows how Pythoscope
behaves when support for a given standard library object is not implemented.
Line 6 shows a stub constructor for the socket object. In this case developer
is forced to complete the test case by herself.

Another problem discovered during testing was a difficulty of tracking
attribute bindings during test generation. In Python attributes bindings
change dynamically, what makes it hard to track object references that can be
used during testing. In particular, in a generated test, references to objects
that needs to be checked may be lost during execution, and consequently
those objects may be garbage-collected. Ideally Pythoscope should resolve
all those dependencies and inject its own references to those objects into
a generated test. At that time this feature is not implemented, causing
Pythoscope to occasionally generate failing test cases.

Last issue with the generated tests was related to the way Pythoscope
handles equality of Python objects. Python standard library objects have
a well-defined equality semantics. In general, two different objects that are
the same internally (e.g. two lists that contain the same elements) are equal.
Unfortunately that logic doesn’t apply to user-defined classes by default.
This means any two separate user objects are never equal. In other words,
a user object is only equal to itself and nothing else. Equality problem is
very important during testing, as it is at the heart of all assertions. So it
comes without a surprise that any issue in this area will cause Pythoscope
to generate faulty test cases. One example of such a test case is presented
on figure 7.3.

All of the problems described above make Pythoscope a semi-automatic
tool: rather a help in the hands of a developer working on a legacy sys-
tem than a complete solution. A study of programmers’ productivity with
Pythoscope is a possible follow-up to this thesis.

The results may not seem very optimistic, so it is important to note that
the goal of this thesis was to improve Pythoscope’s capabilities by adding
support for side effects. While that goal has been reached there is still a lot
of work required to make Pythoscope a stable and production-ready tool.

90

Bibliography

[1] Aho, Sethi, Ullman, “Compilers: Principles, Techniques, and Tools”,
Addison-Wesley, 1986

[2] James Bach, “Test Automation Snake Oil”, version 2.1, 1999, http:

//www.satisfice.com/articles/test_automation_snake_oil.pdf

[3] Ned Batchelder, “Wicked hack: Python bytecode tracing”, document
available at http://nedbatchelder.com/blog/200804/wicked_hack_

python_bytecode_tracing.html, retrieved on September 30th 2010

[4] Kent Beck, “Test-Driven Development: by Example”, Addison Wesley,
2003

[5] Edmund M. Clarke, Jr., Orna Grumberg, Doron A. Peled, “Model
Checking”, MIT Press, 1999

[6] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, B. M. Horowitz, “Model-based testing in practice” icse, pp.285,
21st International Conference on Software Engineering (ICSE’99), 1999

[7] Michael C. Feathers, “Working Effectively with Legacy Code”, Prentice
Hall, 2005

[8] Martin Fowler, “Mocks Aren’t Stubs”, revision from January 2nd 2007,
http://martinfowler.com/articles/mocksArentStubs.html

[9] Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts,
“Refactoring: Improving the Design of Existing Code”, Addison-Wesley
Professional, 1st edition, 1999

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns”,
Addison-Wesley, 1995

91

[11] Graham, Susan L. Graham, Peter B. Kessler, and Marshall K. McKu-
sick. “gprof: a call graph execution profiler” in Proc. SIGPLAN ’82
Symp. on Compiler Construction, SIGPLAN Notices 17(4), pp. 120-126,
1982.

[12] Kade Hansson, “Java: Trees Versus Bytes”, thesis available at http:

//central.kaserver5.org/Kasoft/Typeset/JavaTree/, retrieved on
September 30th 2010

[13] Raymond Hettinger, “PEP-289: Generator Expressions”, document
available at http://www.python.org/dev/peps/pep-0289/, retrieved
on September 30th 2010

[14] Andrew Kuchling, “Python’s Dictionary Implementation: Being All
Things to All People”, chapter 18 in “Beautiful Code”, O’Reilly Me-
dia, 1st edition, 2007

[15] A.M. Kuchling, “What’s New in Python 2.4”, document available at
http://docs.python.org/whatsnew/2.4.html, retrieved on Septem-
ber 30th 2010

[16] Alex Martelli, “Python in a Nutshell”, Second Edition, O’Reilly Media,
2006

[17] Gerard Meszaros, “XUnit Test Patterns, Refactoring Test Code”,
Addison-Wesley, 2007

[18] Bertrand Meyer, “Object-Oriented Software Construction” 2nd edition,
Prentice Hall, 1997

[19] Glenford J. Myers, “The Art of Software Testing”, 2nd edition, Wiley,
2004

[20] Bryan O’Sullivan, Don Stewart, John Goerzen, “Real World Haskell”,
O’Reilly Media, 2008

[21] Guido van Rossum, Raymond Hettinger, “PEP-308: Conditional Ex-
pressions”, document available at http://www.python.org/dev/peps/
pep-0308/, retrieved on September 30th 2010

[22] Guido van Rossum, Barry Warsaw, “PEP-8: Style Guide for Python
Code”, document available at http://www.python.org/dev/peps/

pep-0008/, retrieved on September 30th 2010

92

[23] B.G. Ryder, “Constructing the Call Graph of a Program”, IEEE Trans-
actions on Software Engineering, vol. SE-5, no. 3, pp. 216-226, May
1979

[24] Kevin D. Smith, Jim J. Jewett, Skip Montanaro, Anthony Baxter,
“PEP-318: Decorators for Functions and Methods”, document avail-
able at http://www.python.org/dev/peps/pep-0318/, retrieved on
September 30th 2010

[25] L. Williams, G. Kudrjavets, N. Nagappan, “On the Effectiveness of Unit
Test Automation at Microsoft”, International Symposium on Software
Reliability Engineering (ISSRE) 2009, Mysuru, India, pp. 81-89

[26] “2to3 - Automated Python 2 to 3 code translation”, documentation page
available at http://docs.python.org/library/2to3.html, retrieved
on September 30th 2010

[27] “Abstract Syntax Trees”, documentation page available at http://

docs.python.org/library/ast.html, retrieved on September 30th
2010

[28] “byteplay” library, homepage available at http://code.google.com/

p/byteplay/, retrieved on September 30th 2010

[29] “Python compiler package”, documentation page available at http:

//docs.python.org/library/compiler.html, retrieved on September
30th 2010

[30] “coverage” nose plugin, documentation page available at
http://somethingaboutorange.com/mrl/projects/nose/doc/

plugin_cover.html, retrieved on September 30th 2010

[31] “ctypes — A foreign function library for Python”, documentation
page available at http://docs.python.org/library/ctypes.html, re-
trieved on September 30th 2010

[32] “docutils” library, homepage available at http://docutils.

sourceforge.net/, retrieved on September 30th 2010

[33] “Import utilities”, documentation page available at http://docs.

python.org/library/imputil.html, retrieved on September 30th
2010

[34] “mock” test double library, homepage available at http://www.

voidspace.org.uk/python/mock/, retrieved on September 30th 2010

93

[35] “Monkey patch” glossary entry available at http://plone.org/

documentation/glossary/monkeypatch, retrieved on September 30th
2010

[36] “nose” unit testing framework, homepage available at http:

//somethingaboutorange.com/mrl/projects/nose/, retrieved
on September 30th 2010

[37] “peak.util.assembler” library, homepage available at http:

//peak.telecommunity.com/DevCenter/BytecodeAssembler, re-
trieved on September 30th 2010

[38] “pickle module”, documentation page available at http://docs.

python.org/library/pickle.html, retrieved on September 30th 2010

[39] “py.test” unit testing framework, homepage available at http://

pytest.org, retrieved on September 30th 2010

[40] “Python glossary”, documentation page available at http://docs.

python.org/glossary.html, retrieved on September 30th 2010

[41] Python project home page available at http://www.python.org/, re-
trieved on September 30th 2010

[42] “The Python Standard Library”, documentation page available at http:
//docs.python.org/library/, retrieved on September 30th 2010

[43] “Python testing tools taxonomy”, wiki page available at http://

pycheesecake.org/wiki/PythonTestingToolsTaxonomy, retrieved on
September 30th 2010

[44] “The Python Tutorial, chapter 6: Modules”, document available
at http://docs.python.org/tutorial/modules.html, retrieved on
September 30th 2010

[45] “Running Pythoscope against the stdlib” post by Ryan Freckleton
on pythoscope google group available at http://groups.google.com/

group/pythoscope/msg/12aa72251b8030a2, retrieved on September
30th 2010

[46] “setuptools” library, homepage available at http://pypi.python.org/
pypi/setuptools, retrieved on September 30th 2010

94

[47] “StringIO — Read and write strings as files”, documentation page avail-
able at http://docs.python.org/library/stringio.html, retrieved
on September 30th 2010

[48] “The Python Language Reference”, documentation page available at
http://docs.python.org/reference/, retrieved on September 30th
2010

[49] “unittest module”, documentation page available at http://docs.

python.org/library/unittest.html, retrieved on September 30th
2010

[50] “Pure function” wikipedia article available at http://en.wikipedia.

org/wiki/Pure_function, retrieved on September 30th 2010

CD contents

/cdcontents.txt List of CD contents with descriptions

/thesis This thesis contents in pdf format

/pythoscope Pythoscope’s source code

/aap Code of A-A-P used as an example in chapter 3

/testapps Code of applications used for testing in chapter 7

/generated Code of generated tests from chapter 7

95

